Abstract:
Method and an anti-attachment device configured to be provided on a streamer. The anti-attachment device includes a body configured to be provided around the streamer and a first end is configured to be rotatably attached to the streamer.
Abstract:
Various implementations directed to a foul release material for use with fairings. In one implementation, a seismic cable for use in a seismic acquisition system may include a fairing configured to engage with an outer diameter of the seismic cable. The seismic cable may also include a foul release material applied to an outer surface of the fairing, where the foul release material is configured to minimize the formation of biofouling on the outer surface of the fairing.
Abstract:
Discloses herein is a system of acquiring seismic date in a marine environment, which includes: seismic streamers towed by a vessel; and means for detecting and/or locating marine mammals, characterized in that said marine mammal detection and/or location means are secured to said seismic streamers.
Abstract:
A torque relief system dissipates a torque in a marine cable section to be used for seismic data collection. The system includes a bench having a deadman unit; a tensioning element connected to the deadman unit; a swivel bearing unit connected to the tensioning element and configured to receive a first end of the marine cable section; and at least one bearing unit configured to support the marine cable section with reduced friction so that when the tensioning element tenses the marine cable section, the marine cable section and the first end rotate freely until the torque is dissipated.
Abstract:
Depth triggers for marine geophysical survey cable retriever systems. At least some of the illustrative embodiments include causing a submerged geophysical survey cable to surface. In some cases, the causing the cable to surface may include: fracturing a frangible link wherein the frangible link, before the fracturing, affixes position of a piston within a cylinder bore of a housing coupled to the geophysical survey cable, and the fracturing of the frangible link responsive to pressure exerted on a face of the piston as the geophysical survey cable reaches or exceeds a predetermined depth; moving the piston within the cylinder bore; and deploying a mechanism that makes the geophysical survey cable more positively buoyant.
Abstract:
According to the present invention there is provided a vibration isolation section for use in a seismic streamer system, the section including: a resilient sheath arranged to be connected end-to-end in a seismic streamer system and receive axial loads transmitted through the system, wherein the resilient sheath is configured to stretch upon receiving an axial load and substantially convert the axial load into a radial stress; and a support structure housed within the resilient sheath, the support structure including one or more members having substantially constant diameter under load which provides a reaction to the radial stress, thereby providing attenuation to the received axial load.
Abstract:
Discloses herein is a system of acquiring seismic date in a marine environment, which includes: seismic streamers towed by a vessel; and means for detecting and/or locating marine mammals, characterised in that said marine mammal detection and/or location means are secured to said seismic streamers.
Abstract:
Geophysical surveys in marine environments. At least some of the illustrative embodiments are methods including: attaching a first sensor module to a sensor cable having an outer jacket, the first sensor module electrically isolated from an electrical conductor disposed within the outer jacket of the sensor cable; attaching a second sensor module to the sensor cable, the second sensor module electrically isolated from an electrical conductor disposed within the outer jacket of the sensor cable; placing the sensor cable and the sensor modules onto a sea floor; communicating with the sensor modules by way of the electrical conductor disposed within the outer jacket; collecting geophysical data by the first and second sensor modules while the sensor cable is on the sea floor; and downloading to a computer system geophysical data from the first and second sensor modules.
Abstract:
A module is provided for processing geophysical data coming from at least one geophysical sensor. The module includes: an electronic board configured to enable the processing of geophysical data captured by the at least one geophysical sensor; and two cable sections each including, at one extremity, a connector designed to be connected to said electronic board. Each connector forms one half-shell and is arranged so as to cooperate with one other half-shell in such a way as to form a shell in which the electronic board is placed.
Abstract:
A seismic cable including sensors, data transmission lines extending the length of the seismic cable for conveying data signals issued from the sensors. Controllers distributed along the seismic cable operate as an interface between the sensors and the data transmission lines. Power supplying lines supply power to the controllers and the sensors. X power supplying lines are alternately connected to one out of X successive controllers. Each controller is adapted for applying on a power supplying line detected as defective the electrical tension provided by another power supplying line. Y data transmission lines are alternately connected to one out of Y successive controllers. Each controller is adapted to redirect towards at least one adjacent controller the data associated with a data transmission line which is determined to be defective.