Abstract:
To determine the position and orientation of an object in a x-ray image the x-ray image is initially pre-processed. A three-dimensional template (data record) of the object based on the known constructional features of the object is created. Three parameters for the position and for the orientation respectively are modified iteratively. The three-dimensional template with the parameters for position and orientation is projected in each case onto a two-dimensional plane and the created image is compared on the basis of the generation of a degree of similarity with the pre-processed x-ray image.
Abstract:
X-ray device with a detector and an adjustable diaphragm for fading-in an examination area, whereby the detector (6) can be controlled and read-out asymmetrically and the diaphragm (8) can be moved asymmetrically.
Abstract:
The invention provides a method for the graphical representation of a medical instrument (3) inserted at least partially into an object under examination (2), with an image (4) representing the medical instrument (3) being generated, in that the instrument image (4) is vectorized (V), with the medical instrument (3) being represented as a polyline (8, 8′).
Abstract:
To determine the position and orientation of an object in a x-ray image the x-ray image is initially pre-processed. A three-dimensional template (data record) of the object based on the known constructional features of the object is created. Three parameters for the position and for the orientation respectively are modified iteratively. The three-dimensional template with the parameters for position and orientation is projected in each case onto a two-dimensional plane and the created image is compared on the basis of the generation of a degree of similarity with the pre-processed x-ray image.
Abstract:
An x-ray diagnostic apparatus has an x-ray radiator, a control device connected thereto, a radiation detector and a patient positioning table. A patient weighing device that is connected with the control device to influence parameters for setting the x-ray radiation is associated with the patient positioning table.
Abstract:
To protect a digital flat detector, especially a mobile detector, against being damaged by the effect of impact, an automatically triggering device is provided. The automatically triggering device, including an airbag for example, is provided for protection against the effect of external mechanical impact.
Abstract:
An x-ray system HAS adjustable operating parameters with a dependency existing between different auxiliary types of equipment selectable for an examination and a suitable setting of the parameter. A control system of the x-ray system has a data input device to detect the used auxiliary equipment, a data storage device with data concerning the relation between each type of auxiliary equipment and an optimal setting of the parameters therefor, and an adjustment device for automatically adjusting the parameter dependent on the selection of the auxiliary equipment.
Abstract:
In an apparatus and method to acquire images with the aid of high-energy photons for the examination soft tissue parts, two x-ray exposures are simultaneously obtained in different energy ranges. At least two scintillators that transmit optical photons to associated detectors are disposed in the beam path of the x-ray photons.
Abstract:
This is a method of generating a plurality of images of a substrate from radioactive radiation coming from a plurality of radioactive tracers contained in the substrate. To this end, data representing the different detection signals generated by a detector are memorised, individually for each radioactive emission detected during a certain observation period, then statistical processing of these data is carried out in such a way as to estimate the images of the different tracers which correspond best to the set of memorised data.
Abstract:
To make interventional instruments such as catheters more easily identifiable in X-ray images, the catheters are provided with marking elements which can be recognized in the X-ray image. Examples of marking elements are sphere-shaped and ring-shaped marking elements, the ring-shaped marking elements being able to identify the catheters in the manner of a barcode and so being able to make different catheters distinguishable from one another in the X-ray image.