Abstract:
A semiconductor device including storage nodes and a method of manufacturing the same: The method includes forming an insulating layer and an etch stop layer on a semiconductor substrate; forming storage node contact bodies to be electrically connected to the semiconductor substrate by penetrating the insulating layer and the etch stop layer; forming landing pads on the etch stop layer to be electrically connected to the storage node contact bodies, respectively; and forming storage nodes on the landing pads, respectively, the storage nodes of which outward sidewalls are completely exposed and which are arranged at an angle to each other.
Abstract:
A DRAM memory cell includes a semiconductor substrate, an interlayer dielectric having storage node contact plugs that is formed on the semiconductor substrate, and storage node electrodes that are formed on the interlayer dielectric to contact the storage node contact plugs. The storage node contact plugs are formed such that an entrance portion is formed to be larger in linewidth than a contacting portions, and they are formed in gaps between the bit line structures. From a plan view perspective, the storage node electrodes of one column are offset from the storage node contact plugs in an adjacent column, such that the storage node electrodes are in a diagonal arrangement throughout the semiconductor substrate.
Abstract:
A semiconductor device comprises a plurality of gate structures formed on a substrate, a gate spacer formed on a sidewall of the gate structures, a semiconductor pattern formed on the substrate between the gate structures, a first impurity region and a second impurity region formed in the semiconductor pattern and at surface portions of the substrate, respectively, wherein the first and second impurity regions include a first conductive type impurity, and a channel doping region surrounding the first impurity region, wherein the channel doping region includes a second conductive type impurity.
Abstract:
Bit lines having first conductive patterns and bit line mask patterns are formed on a first insulating layer between capacitor contact regions of a substrate. An oxide second insulating layer is formed on the bit lines and contact patterns are formed to open storage node contact hole regions corresponding to portions of the second insulating layer. First spacers are formed on sidewalls of the etched portions. The second and first insulating layers are etched to form storage node contact holes exposing the capacitor contact regions. Simultaneously, second spacers of the second insulating layer are formed beneath the first spacers. A second conductive layer fills the storage node contact holes to form storage node contact pads. A loss of the bit line mask pattern decreases due to the reduced thickness of the bit line mask pattern and a bit line loading capacitance decreases due to the second spacers.
Abstract:
Disclosed is a method of forming a self-aligned contact structure using a sacrificial mask layer. The method includes forming a plurality of parallel interconnection patterns on a semiconductor substrate. Each of the interconnection patterns has an interconnection and a mask pattern, which are sequentially stacked. Interlayer insulating layer patterns are formed to fill gap regions between the interconnection patterns. The mask patterns are partially etched to form recessed mask patterns that define grooves between the interlayer insulating layer patterns. Then, sacrificial mask patterns filling the grooves are formed. A predetermined region of the interlayer insulating layer patterns is etched using the sacrificial mask patterns as etching masks to form a self-aligned contact hole that exposes a predetermined region of the semiconductor substrate. A spacer is formed of a sidewall of the self-aligned contact hole, and a plug surrounded by the spacer is formed in the self-aligned contact hole.
Abstract:
A self-aligned buried contact (BC) pair includes a substrate having diffusion regions; an oxide layer exposing a pair of diffusion regions formed on the substrate; bit lines formed between adjacent diffusion regions and on the oxide layer, each of the bit lines having bit line sidewall spacers formed on sidewalls thereof; a first interlayer dielectric (ILD) layer formed over the bit lines and the oxide layer; a pair of BC pads formed between adjacent bit lines and within the first ILD layer, each BC pad being aligned with one of the pair of exposed diffusion regions in the substrate; and a pair of capacitors, each of the pair of BC pads having one of the pair of capacitors formed thereon, wherein a pair of the bit line sidewall spacers is adjacent to each of the BC pads and the pair of bit line sidewall spacers has an asymmetrical shape.
Abstract:
A method of forming a semiconductor device that includes cleaning a substrate after forming a tungsten pattern thereon, comprises forming a tungsten layer on a substrate, etching the tungsten layer to form a tungsten pattern, and performing a cleaning process on the substrate having the tungsten pattern using a cleaning solution of a water solution containing 0.1 to 0.4 wt % fluoric acid and 0.5 to 2 wt % hydrogen peroxide. By using the method of the present invention, metal polymers and oxidized slurry residue generated while forming the tungsten pattern may be completely removed without attacking the tungsten pattern.
Abstract:
A semiconductor device comprises a plurality of gate structures formed on a substrate, a gate spacer formed on a sidewall of the gate structures, a semiconductor pattern formed on the substrate between the gate structures, a first impurity region and a second impurity region formed in the semiconductor pattern and at surface portions of the substrate, respectively, wherein the first and second impurity regions include a first conductive type impurity, and a channel doping region surrounding the first impurity region, wherein the channel doping region includes a second conductive type impurity.
Abstract:
A self-aligned buried contact (BC) pair includes a substrate having diffusion regions; an oxide layer exposing a pair of diffusion regions formed on the substrate; bit lines formed between adjacent diffusion regions and on the oxide layer, each of the bit lines having bit line sidewall spacers formed on sidewalls thereof; a first interlayer dielectric (ILD) layer formed over the bit lines and the oxide layer; a pair of BC pads formed between adjacent bit lines and within the first ILD layer, each BC pad being aligned with one of the pair of exposed diffusion regions in the substrate; and a pair of capacitors, each of the pair of BC pads having one of the pair of capacitors formed thereon, wherein a pair of the bit line sidewall spacers is adjacent to each of the BC pads and the pair of bit line sidewall spacers has an asymmetrical shape.