Abstract:
An asymmetric display panel has driver integrated circuits. When the asymmetric display panel is in an image inversion state, a boosting clock signal is transmitted to drive the data lines or the scan lines that are disconnected from the asymmetric display panel. A pulse number of the boosting clock signal is equal to a number of the data lines or scan lines that are disconnected from the asymmetric display panel.
Abstract:
A liquid crystal display (LCD) panel with power consumption reduction and methods of driving same. In one embodiment, the LCD panel includes a pixel matrix, a plurality of scanning lines and a plurality of data lines. Each pair of two neighboring scanning lines defines a pixel row therebetween, and each pair of two neighboring data lines defines a pixel column therebetween. Each pixel has at least a first sub-pixel and a second sub-pixel. Each sub-pixel has a sub-pixel electrode and a switching element electrically coupled to the sub-pixel electrode. Each pair of two neighboring scanning lines is electrically coupled to the switching elements of the first sub-pixel and the second sub-pixel of each pixel in the pixel row, respectively. Each data line is electrically coupled to the switching element of the first sub-pixel or the second sub-pixel of each odd pixel of one of two neighboring pixel columns associated with the data line and to the switching element of the second sub-pixel or the first sub-pixel of each even pixel of the other of the two neighboring pixel columns. The LCD panel further includes a gate driver and a data driver for generating scanning signals and data signals applied to the plurality of scanning lines and the plurality of data lines, respectively. The scanning signals are configured to turn on the switching elements connected to the plurality of scanning lines in a predefined sequence, and the data signals are configured such that any two neighboring data signals have inverted polarities.
Abstract:
An asymmetric display panel has driver integrated circuits. When the asymmetric display panel is in an image inversion state, a boosting clock signal is transmitted to drive the data lines or the scan lines that are disconnected from the asymmetric display panel. A pulse number of the boosting clock signal is equal to a number of the data lines or scan lines that are disconnected from the asymmetric display panel.
Abstract:
Display panels buffering display data from a data driver. The display panel comprises a first signal line, a first data line, a first scan line interlaced with the first data line, a first pixel coupled to the first data line and the first scan line, a first switching element comprising a first terminal coupled to the first data line, a first storage capacitor coupled between a second terminal of the first switching element and a ground, and a second switching element coupled to the first storage capacitor and the first signal line.
Abstract:
A video processing chip capable of adjusting aspect ratio and a method of displaying an image thereby are provided. The video processing chip outputs an adjusted image signal according to a video signal to an LCD panel to display an image. The video processing chip includes a video processor, a ratio detector, a timing controller, and a multiplexer. The video processor generates an image signal according to the video signal. The ratio detector detects the aspect ratio of the video signal, and outputs a ratio control signal according to a ratio setting value. The timing controller outputs a vertical blanking signal, a horizontal blanking signal, and a blanking data in responding to the ratio control signal. The multiplexer selects the blanking data signal or the image signal as the adjusted image signal to be outputted, so that the displayed image has the aspect ratio corresponding to the ratio setting value.
Abstract:
A backlight module. The backlight module for a display device has a first light-emitting device, a second light-emitting device, and a driving circuit. The first light-emitting device has a plurality of first light-emitting units arranged in series. The second light-emitting device has a plurality of second light-emitting units in series. The first light-emitting units and the second light-emitting are interlaced. The driving circuit drives the first light emitting device with a first voltage to emit light of a first brightness, and the second light emitting device with a second voltage to emit light of a second brightness.
Abstract:
A display device having slim border-area architecture is disclosed. The display device includes a substrate, a plurality of data lines, a plurality of gate lines, a plurality of auxiliary gate lines and a driving module. The substrate includes a display area and a border area. The data lines, the gate lines and the auxiliary gate lines are disposed in the display area. The driving module is disposed in the border area. The gate lines are crossed with the data lines perpendicularly. The auxiliary gate lines are parallel with the data lines. Each auxiliary gate line is electrically connected to one corresponding gate line. The data and auxiliary gate lines are electrically connected to the driving module based on an interlace arrangement. Further disclosed is a driving method for delivering gate signals provided by the driving module to the gate lines via the auxiliary gate lines.
Abstract:
An exemplary method of determining a pointing object position for three-dimensional interactive system, adapted for an interaction between a pointing object and a three-dimensional interaction display with embedded optical sensors. The method includes the steps of: acquiring a two-dimensional detected light intensity distribution caused by the pointing object acting on the three-dimensional interaction display; obtaining two light-shading intensity maximum values according to the two-dimensional detected light intensity distribution; and determining a one-dimensional positional information of the pointing object on a distance direction of the pointing object relative to the three-dimensional interaction display by use of the positional distance between the two light-shading intensity maximum values.
Abstract:
A display device includes a data line, a first and second pixel rows and a first and second gate control lines all formed on a substrate. The first pixel row includes a plurality of pixels each containing two neighboring first sub-pixel and second sub-pixel, the first sub-pixel is coupled to the data line, the second sub-pixel is coupled to the data line through the first sub-pixel. The second pixel row is neighboring with the first pixel row and includes a plurality of pixels each containing two neighboring third sub-pixel and fourth sub-pixel, the third sub-pixel is coupled to the data line, the fourth sub-pixel is coupled to the data line through the third sub-pixel. The first and second gate control lines respectively are for enabling the first and second sub-pixels and both are not used to enable the third and fourth sub-pixels. A driving method of gate control lines also is provided.
Abstract:
An electronic label system and an operation method thereof are provided. The electronic label system includes a control unit and a plurality of electronic label units. The control unit is used for sending display information. The electronic label units are coupled to the control unit to receive the display information and display according to the corresponding display information, respectively. The electronic label units respectively output a plurality of state information to the control unit so that the control unit can monitor operation states of the electronic label units according to the state information.