Abstract:
The present invention provides a backlight module for the light emitting device (LED) chip holder. The backlight module includes a top guide-light board, a bottom guide-light board, a chip holder with an inclined plane thereon, and a light emitting diode chip. The one side of the top guide-light board and the bottom guide-light board has a reflective sheet, and the light emitting diode chip located on the inclined surface of the chip holder, and further the light emitting diode chip embedded in the bottom guide-light. When the light emitting diode chip emitted incident light source, the light source produces the total reflection on the bottom guide-light board to reflect to the reflective mirror. Then, the light source is reflected to the top guide-light board by the reflective sheet, and is emitted out from the top guide-light board to be a light source for the backlight module to be a light source for the backlight module.
Abstract:
A light-guide plate comprising a light-guide board having a first refractive index and at least one light-guide part buried inside the light-guide board is provided. The light-guide part has a second refractive index larger than the first refractive index. The light-guide board and the light-guide part buried therein have different refractive indices so that the total reflection may occur for improving the light transmission efficiency in the light-guide plate.
Abstract:
In a method of fabricating a planar light source, a first substrate is formed at first. First electrodes approximately parallel to each other are formed on the first substrate. Sets of first dielectric patterns are formed on the first substrate. Each set of the first dielectric patterns includes at least two first striped dielectric patterns, and each of the first striped dielectric patterns covers one of the first electrodes correspondingly. The edges of the top of each first striped dielectric pattern are raised in a peak shape. A phosphor layer is formed between the first striped dielectric patterns of each set of the first dielectric patterns. A second substrate is formed. The first and second substrates are bound; meanwhile, a discharge gas is injected into the discharge space.
Abstract:
A flat light source including a first substrate, a second substrate, a sealant, several sets of dielectric pattern and a phosphor layer is provided. The first substrate has electrodes thereon. The sealant is disposed between the first and second substrates to form a space between the first and second substrates and the sealant. These sets of dielectric pattern are formed in the space between the first and second substrates. Each set of dielectric pattern has at least two dielectric strips, and each dielectric strip covers one of the electrodes correspondingly. Each dielectric strip has a top surface and two side surfaces, and the top surface has an uneven contour. The phosphor layer is disposed between the two dielectric strips of each set of dielectric pattern, and the phosphor layer is further disposed on the top surface of the dielectric strips.
Abstract:
A direct type backlight module comprising a frame, a substrate, a plurality of light emitting devices and a light-guiding unit is provided. The frame comprises a base and an enclosing wall extended upward from the edge of the base. The substrate is arranged on the base of the frame, and the light emitting devices are arranged on the substrate. The light-guiding unit covers the light emitting devices and exposes a portion of the substrate, and has a light emitting surface and a light incident surface both of a concave shape. Based on the above mentioned structure, the uniformity of the white light emitted from the direct type backlight module can be improved.
Abstract:
A precursor composition of TiO2 doped with erbium (Er) and yttrium (Y) for forming a film used in a planar optical waveguide amplifier. The precursor composition includes 100 mol % TiO2 precursor compound, about 0.1-10 mol % erbium ion (Er3+) precursor compound, and about 1-50 mol % yttrium ion (Y3+) precursor compound, thereby forming a doped TiO2 film co-doped with erbium and yttrium an amorphous structure to achieve the enhancing effect on photoluminescence properties.