Abstract:
A current detecting circuit detects a resonant current in a primary side of a resonant converting circuit to generate a current detecting signal. An output detecting circuit generates a feedback signal according to the output voltage. A resonant controller generates a clock signal and adjusts an operating frequency of the clock signal in response to the feedback signal for modulating the output voltage of the resonant circuit. The resonant controller includes a resonance deviation protection unit which detects the current detecting signal according to a phase of the clock signal to determine whether the resonant circuit enters a region of zero current switching or not. When the resonant circuit enters the region of zero current switching, the resonant controller executes a corresponding protection process in response to that the resonant controller operates in a starting mode or a normal operating mode.
Abstract:
The resonant converting circuit comprises a resonant circuit, a current detecting circuit and the resonant controller. The resonant controller controls a power conversion of the resonant circuit for converting an input voltage into an output voltage and the resonant controller comprises an over current judgment unit and an over current protection unit. The over current judgment unit determines whether the resonant current is higher than an over current value according to a current detecting signal generated by the current detecting circuit. The over current protection unit generates a protection signal in response to a determined result of the over current judgment unit and an indication signal indicative of an operating state of the resonant controller. The resonant controller executes a corresponding protecting process in response to the protection signal.
Abstract:
A driving circuit controls a driving signal according to a control signal at a first or second logic level for driving a load. A driving protection circuit includes a driving signal detection circuit for generating a load error signal in response to that a load is abnormal; a delay judgment circuit coupled to the driving signal detection circuit for generating a first signal in response to that the load has been abnormal for a predetermined time period; and a logic control circuit coupled to the delay judgment circuit and the driving circuit for determining whether to modulate the driving signal according to the first signal. When the control signal has been at the first logic level and the load has been abnormal for the predetermined time period, the logic control signal modulates the driving signal to be a level corresponding to the control signal at the second logic level.
Abstract:
A converting controller, adapted to control a converting circuit to convert an electric power from an input power source, is provided. The controller comprises a duty cycle control unit, a protection enabling control unit and a protection unit. The duty cycle control unit controls the converting circuit according to a feedback signal for converting the electric power from the input power. The protection enabling control unit outputs protection enabling signals according to time results of a timing circuit. The protection unit detects the converting circuit and generates a protection signal when any circuit error is determined, so as to stop the duty cycle control unit, wherein the protection unit has a plurality of protection functions and enables the protection functions with respect to the protection enabling signals, respectively.
Abstract:
A power converting circuit and a feedback control circuit for the power converting circuit are disclosed. The feedback control circuit comprises a feedback controller and a level controlling unit. The feedback controller generates a feedback control signal according to a reference voltage signal and a feedback signal. The level controlling unit receives one of the reference voltage signal and the feedback signal and modules a level of the received signal from a first level to a second level with time according to a level adjusting signal.
Abstract:
The present invention provides a transistor circuit with protecting function. The transistor circuit includes a transistor, a voltage detecting unit, a current detecting unit, a temperature detecting unit, and a protecting unit. The voltage detecting unit detects a voltage drop of the transistor and generates an over-voltage protection signal. The current detecting signal detects a current flowing through the transistor and generates an over-current protection signal. The temperature detecting unit detects a temperature of the transistor circuit and generates an over-temperature protection signal. The protecting unit is coupled to the control terminal to control a state of the transistor according to the over-voltage protection signal, the over-current protection signal, and the over-temperature protection signal to reduce the voltage difference between the control terminal and the second terminal, such that the voltage drop of the transistor is decreased or decreased to zero.
Abstract:
A fluorescent lamp device includes a frequency generator for generating a pulse signal, a driver circuit coupled to said frequency generator for generating at least one driving signal according to said pulse signal, a half bridge power switch unit coupled to the driver circuit, a resonant tank coupled to the half bridge power switch unit, and a fluorescent lamp coupled to the resonant tank.
Abstract:
A MOSFET layout is disclosed. The MOSFET comprises a drain region, a gate region, a source region and a body region. The gate region is disposed outside the drain region and adjacent to the drain region. The source region has a plurality of source sections, which are disposed outside of the gate region and adjacent to the gate region. Each of two adjacent source sections has a source blank zone there between. The body region has at least two body portions, which are disposed at the source blank zones and adjacent to the gate region.
Abstract:
In the related art, the measurement error due to the internal resistance of the battery is not considered in the battery balance method, such that the battery balance is not accurate, or the battery balance process is frequently started and stopped. In exemplary embodiments of the invention, detecting battery voltage and balancing battery voltage are performed in different time, such that the difference of charge current/discharge current among the batteries due to the battery voltage balance process do not affect the battery voltage detecting.
Abstract:
A de-glitch switching converting circuit and a controller thereof are provided. In the embodiment of the invention, the circuit can filter noises with high frequency by way of time judgment, so as to avoid the erroneous operation of the controller affecting the stability of the output voltage or the output current. Compared with the method of using low-pass filters with large capacitors to filter noises, highly increasing the cost of the circuit is unnecessary in the embodiment of the invention. The circuit in the embodiment of the invention also has the capability for filtering noises with high amplitudes. In addition, by setting suitable parameters, the circuit in the embodiment of the invention can also avoid affecting the transient response of the circuit while filtering noises.