Abstract:
The multi-parameter data produced via flow cytometry and other biological analyses techniques can generate enormous amounts of data, which can take extensive time and/or computational resources to complete. Embodiments provided herein allow for adaptive sub-sampling of such data prior to analysis, allowing for such analyses to be performed while satisfying certain performance criteria. Such performance criteria may include, for example, keeping the latency of the analysis below a specified duration. This can allow analysis of data to be performed in real time as the data is generated, e.g., as flow cytometry data is generated by a cell counter or other flow cytometry instrument. This can also permit for data analyses to be iteratively developed or improved in less time by adaptively sub-sampling the data prior to re-analysis, so that the total time between iterations is reduced.
Abstract:
A method of analyzing images of a biological specimen using a computational model is described, the method including processing a cell image of the biological specimen and a phase contrast image of the biological specimen using the computational model to generate an output data. The cell image is a composite of a first brightfield image of the biological specimen at a first focal plane and a second brightfield image of the biological specimen at a second focal plane. The method also includes performing a comparison of the output data and a reference data and refining the computational model based on the comparison of the output data and the reference data. The method also includes thereafter processing additional image pairs according to the computational model to further refine the computational model based on comparisons of additional output data generated by the computational model to additional reference data.
Abstract:
The disclosure provides example methods that include a processor: (a) generating at least one phase contrast image of a biological specimen comprising one or more cells centered around a focal plane for the biological specimen; (b) generating a confluence mask in the form of a binary image based on the at least one phase contrast image; (c) receiving a first brightfield image of the biological specimen at a defocusing distance above the focal plane and a second brightfield image of the biological specimen at the defocusing distance below the focal plane; (d) generating a cell image of the biological specimen based on the first and second brightfield image; (e) generating a seed mask based on the cell image and the phase contrast image; and (f) generating an image of the biological specimen showing a cell-by-cell segmentation mask based on the seed mask and the confluence mask.
Abstract:
A method for evaluating a biological material for unassociated virus-size particles having an adenovirus epitope uses a fluorescent antibody stain specific for binding with the epitope and a fluid sample with the virus-size particles and fluorescent antibody stain is subjected to flow cytometry with identification of fluorescent emission detection events indicative of passage through a flow cell of a flow cytometer of unassociated labeled particles of virus size including such a virus-size particle and fluorescent antibody stain.
Abstract:
A method for evaluating a biological material for unassociated virus-like particles virus size having a particular epitope uses a fluorescent antibody stain specific for binding with the epitope and a fluid sample with the virus-size particles and fluorescent antibody stain is subjected to flow cytometry with identification of fluorescent emission detection events indicative of passage through a flow cell of a flow cytometer of unassociated labeled particles of virus size including such a virus-like particle and fluorescent antibody stain.
Abstract:
A method for evaluating a biological material for unassociated virus-size particles of exosomes having a particular epitope uses a fluorescent antibody stain specific for binding with the epitope and a fluid sample with the exosomes and fluorescent antibody stain is subjected to flow cytometry with identification of fluorescent emission detection events indicative of passage through a flow cell of a flow cytometer of unassociated labeled particles of virus size including such an exosome and fluorescent antibody stain.
Abstract:
Apparatus and methods to improve the Boyden chamber used in cellular biological measurements, allowing quantitative optical microscopy of biological cells in situ without using fluorescent probes or optical staining. In the preferred embodiment, a thin porous membrane separating top and bottom reservoirs includes an array of precisely positioned micropores pores manufactured using a laser-based photo-machining (ablation) process. The membrane may be composed of polyethylene terephthalate (PET), polycarbonate, polyimide, polyether ether ketone (PEEK) or other appropriate material. The pores formed in the membrane may have diameters in the range of 1 to 15 microns and spaced apart at a distance ranging from 10 to 200 microns. A plurality of upper and lower reservoirs may be provided to form a multi-well plate. The invention finds application in a wide range of potential biological applications where Boyden chamber geometries are currently used including co-culture studies, tissue remodeling studies, cell polarity determinations, endocrine signaling, cell transport, cell permeability, cell invasion and chemotaxis assays.