Abstract:
An ammunition magazine contains an ammunition belt of linked ammunition cartridges to be fed into a machine gun, the magazine including a front opening, enabling a leading end of the ammunition belt to be accessible for feeding the machine gun and for linking with a trailing end of another ammunition belt, and a rear opening, enabling a trailing end of the ammunition belt to be accessible for linking with a leading end of another ammunition belt. An arrangement of consecutive and adjacent ammunition magazines allows movement of an ammunition belt from the distal magazine into the proximal magazine towards the machine gun during operation, enabling continuous feeding of ammunition belts into the machine gun. An ammunition loading system for conveying ammunition between a magazine platform and a hull region, including a lifting mechanism to lift an ammunition magazine into the magazine platform from the hull region.
Abstract:
A Helmet Mounted Display (HMD) system, to be mounted on a helmet of a user, includes a tinted visor, coupled with the helmet, located in front of the face of the user when the tinted visor is in an operative position. The tinted visor further includes a patch, which is located in front of an eye of the user. The patch has greater light transmission than the rest of the tinted visor. The HMD system includes an image generator, coupled with the helmet, generating an image to be displayed to the user. The HMD system further includes an optical combiner, coupled with the helmet, and located substantially on the optical axis of the user's eye. The combiner reflects the generated image toward the eye, and transfers light rays of an outside scene toward the eye.
Abstract:
Method for autonomous safe emergency landing of a powered unmanned aerial vehicle (UAV) in the event of an engine failure. A landing approach trajectory is generated, including a downwind leg, initiating at an initiation point of the trajectory, an upwind leg, terminating at a selected touchdown point, and a U-turn leg, joining between the downwind leg and the upwind leg. The UAV is directed to the initiation point to follow the downwind leg. A glide ratio of the UAV is repeatedly determined based on current flight conditions. A current turning point is repeatedly determined along the downwind leg based on the determined glide ratio, the U-turn leg initiating at the current turning point. When the UAV arrives at the current turning point, the UAV is directed to follow the U-turn leg and the upwind leg, for landing the UAV at the selected touchdown point.
Abstract:
A safety system for preventing aircraft collisions with objects on the ground is provided herein. The safety system may include gated imaging sensors attached to the aircraft that capture overlapping gated images which are images that allow estimating the range of the imaged objects. The overlap zones are utilized to generate a three dimensional model of the aircraft surroundings. Additionally, aircraft contour data and aircraft kinematic data are used to construct an expected swept volume of the aircraft which is then projected onto the three dimensional model of the aircraft surroundings to derive an estimation of likelihood of collision of the aircraft with objects in its surroundings and corresponding warnings.
Abstract:
An autonomous navigation system and method for a maneuverable platform are provided herein. The method may include: obtaining a plurality of objectives relating to a maneuverable platform; determining a plurality of options of direction and speed for the platform; autonomously selecting, one option of the plurality of options, in order to achieve said objectives, by calculating a weighted grade of each option based on the weights of the objectives and said grading scheme; and periodically repeating: the receiving with updated platform and obstacles data and the autonomously selecting with the updated platform and obstacles data, wherein the autonomously selecting is executed by a computer processor and includes, for each obstacle, calculating projected positions of the platform and of that obstacle to determine the distance between the platform and the obstacle at the closest point of approach and estimated time to arrive to the closest point of approach.
Abstract:
Device and method for providing inertial indications with high accuracy using micro inertial sensors with inherent very small size and low accuracy. The device and method of the invention disclose use of the cluster of multiple micro inertial sensors to receive from the multiple sensors an equivalent single inertial indication with high accuracy based on the multiple independent indications and mathematical manipulations for averaging the plurality of single readings and for eliminating common deviations based, for example, on measurements of the deviation of the single readings.
Abstract:
A device for image gating using an array of reflective elements is provided herein. The device includes an array of reflective elements, wherein each one of the reflective elements is movable within a range of a plurality of tilt positions, wherein the array is located at an image plane of the device, wherein the array is perpendicular to an optical axis of the device. The device further includes a control unit configured to control the reflective elements such that in at least some of the tilt positions, the reflective elements reflect the radiant flux at said image plane, to one or more projection planes. A gradual rotation of the reflective elements along the plurality of tilt positions result in a gradual increase or decrease in the intensity of the image reflected from the array of reflective elements while maintaining the image integrity.
Abstract:
System for producing a substantially noise-free signal of an acoustic sound, and for producing a sound, the sound including a desired sound and an anti-phase noise sound, the anti-phase noise sound being in anti-phase relative to a noise, the system including an acoustoelectric transducer, a reference-acoustoelectric transducer and an audio controller coupled with the reference-acoustoelectric transducer and the acoustoelectric transducer, wherein the acoustoelectric transducer produces a noise bearing sound signal by detecting the acoustic sound and the noise, wherein the reference-acoustoelectric transducer produces the reference noise signal by detecting the noise in a noisy environment and wherein the audio controller produces the substantially noise-free signal, according to the reference noise signal and the noise bearing sound signal.
Abstract:
A direct view display system (DVDS) and a method to operate it are provided herein. The DVDS may include: a variable optical power element (VOPE); a transparent active image source located with the VOPE on a common optical axis going from an outside scene to an eye position of a viewer; and a time division multiplexer (TDM) configured to control the VOPE and the transparent active image source, wherein the TDM is configured in a certain time period to cause the transparent active image source to be in a transparent state and the VOPE to exhibit no optical power, and wherein the TDM is configured in another time period to cause said transparent active image source to exhibit an image and said VOPE to apply non-zero optical power, for projecting the image onto the eye position at a desirable distance therefrom.
Abstract:
A method of determining a configuration of a measurement volume, the method may include: generating, by at least one transmitter, a transmitted magnetic field within the measurement volume; measuring, by at least one receiver positioned, a total magnetic field in the measurement volume at at least one receiver position and generating at least one receiver output signal; generating, by a processing unit, a measured dataset; comparing, by the processing unit, the measured dataset with at least one of at least two reference configuration datasets each for determined for one of at least two different configurations of the measurement volume; and identifying, by the processing unit, a reference configuration dataset of the at least two reference configuration datasets that corresponds to the measured dataset.