Abstract:
A system captures and displays video of surgeries. The system may include at least one digital image sensor optically coupled to one or more lenses and configured to capture a video sequence of a scene in a surgery; at least one interface configured to receive at least one region on interest (ROI) of the captured video sequence; an electronic display, selected so that at least one of the digital image sensors has a pixel resolution which is substantially greater than the pixel resolution of the electronic display; and a computer processor configured to: receive the at least one captured video sequence and the at least one received ROI and display over the at least one electronic display a portion of the captured video sequence based on the at least one selected ROI.
Abstract:
A system captures and displays video of surgeries. The system may include at least one digital image sensor optically coupled to one or more lenses and configured to capture a video sequence of a scene in a surgery; at least one interface configured to receive at least one region on interest (ROI) of the captured video sequence; an electronic display, selected so that at least one of the digital image sensors has a pixel resolution which is substantially greater than the pixel resolution of the electronic display; and a computer processor configured to: receive the at least one captured video sequence and the at least one received ROI and display over the at least one electronic display a portion of the captured video sequence based on the at least one selected ROI.
Abstract:
Imaging systems and methods are provided, which implement wide field imaging of a region for medical procedures and provide tracking of tools and tissues in the whole region while providing digitally magnified images of a portion of the captured region. Optical tracking may be implemented by stereoscopic imaging, and various elements may be optically tracked such as various markers and fiducials, as well as certain shapes and objects which are optically identifiable by image processing.
Abstract:
A novel surgical lens system including a lens and a reflective element. The lens is placed on, or above, a cornea of an eye of a subject for enabling inspection of the eye. The reflective element is incorporated into the lens. The reflective element reflects a light beam toward the eye of the subject. The reflective element increases the divergence of the light beam, such that the divergence of the reflected light beam is larger than the divergence of the light beam. The light beam is emitted by a non-invasive light source positioned externally to the eye.
Abstract:
A device for image gating using an array of reflective elements is provided herein. The device includes an array of reflective elements, wherein each one of the reflective elements is movable within a range of a plurality of tilt positions, wherein the array is located at an image plane of the device, wherein the array is perpendicular to an optical axis of the device. The device further includes a control unit configured to control the reflective elements such that in at least some of the tilt positions, the reflective elements reflect the radiant flux at said image plane, to one or more projection planes. A gradual rotation of the reflective elements along the plurality of tilt positions result in a gradual increase or decrease in the intensity of the image reflected from the array of reflective elements while maintaining the image integrity.
Abstract:
A microsurgery system comprising a robotic arm, configured for movement; a head mounted display (HMD) configured to display to a user in real-time image sequences of an operated area; at least one camera coupled to said robotic arm, said at least one camera configured to acquire operated-area image sequences of said operated area, said at least one camera being suspended above said operated area and being mechanically and optically disconnected from said HMD, said robotic arm enables said at least one camera to capture said operated-area image sequences from a range of perspectives; a processing device configured to be coupled with said HMD and said at least one camera, said processing device configured to transmit said image sequences of said operated-area to said HMD; and a tracker configured to track at least one of a head of said user, a hand of said user, and a tool held by said user; wherein said robotic arm is enabled to be guided according to movements of tracked at least one of said head, said hand, and said tool.
Abstract:
Optical systems and methods are provided, which combine see-through view of the real world and display source images using a conical optical combiner cut to have flat surfaces normal to the viewer line of sight. The conical shape minimizes interferences in the view of the real world as the edges of the optical combiner are tangent to the viewer vision field of view and the inner part of the optical combiner is semitransparent. Additionally, the optical system comprises a beam splitter, a shutter(s) for attenuating or blocking the see-through path and may employ polarizing element to improve the contrast between the scene observation and the projected display and thus enabling selective viewing of either. The system may also be configured to enable diopter adjustment and virtual display distance adjustments.
Abstract:
A novel surgical lens system including a lens and a reflective element. The lens is placed on, or above, a cornea of an eye of a subject for enabling inspection of the eye. The reflective element is incorporated into the lens. The reflective element reflects a light beam toward the eye of the subject. The reflective element increases the divergence of the light beam, such that the divergence of the reflected light beam is larger than the divergence of the light beam. The light beam is emitted by a non-invasive light source positioned externally to the eye.
Abstract:
Systems and method are provided which enhance ophthalmological surgical procedures. Systems may include camera(s) configured to capture and magnify eye image(s) (possibly stereoscopic), a tissue position and orientation (P&O) tracker configured in to track a P&O of a specified eye tissue, a tool P&O tracker configured to track a P&O of treatment tool(s) and derive a tool tip pointing vector therefrom, a processing unit configured to calculate an intersection between the tool tip pointing vector and the specified eye tissue and to relate spatially optical coherence tomography (OCT) image(s) of the eye tissue to the tool tip location and/or to the intersection, and a display module configured to display the magnified image(s) of the eye tissue with the OCT image(s) associated therewith according to the spatial relation. An OCT imager may be mounted on the tool tip to provide the OCT image(s) in real time.