Abstract:
The present invention provides a method for transmitting/receiving a continuous pilot code in a multi-carrier system. The method for transmitting comprises: performing a time-frequency domain two dimensional encoding on an information bit stream to be transmitted; mapping the encoded bit stream to obtain a continuous pilot carrying encoding information; multiplexing a load, a discrete pilot and the mapped continuous pilot carrying the encoding information based on distribution of the load, the discrete pilot and the continuous pilot on a sub-carrier, to generate a frequency domain signal; and performing a frequency-time domain transforming on the generated frequency domain signal, to obtain a time domain sample. The method for receiving comprises: extracting the continuous pilot from an active carrier of a multi-carrier signal; and performing a time-frequency domain decoding on the extracted continuous pilots to obtain the decision of transmitted information bits. The invention ensures reliable transmission of the information without using additional bandwidth resource by carrying information in the continuous pilots using an encoding scheme.
Abstract:
A method and system for cooperative multiple-input multiple output (MIMO) transmission operations in a multicell wireless network. Under the method, antenna elements from two or more base stations are used to from an augmented MIMO antenna array that is used to transmit and receive MIMO transmissions to and from one or more terminals. The cooperative MIMO transmission scheme supports higher dimension space-time-frequency processing for increased capacity and system performance.
Abstract:
A system and method of signal detection is provided. A received signal may be correlated with combinations of reference signals, each combination representing a subset of the reference signals, rather than being correlated with each reference signal individually. Once the timing offset has been found, the specific reference signal matching the received signal may be found with a one-dimensional (1D) search. A large 2-D search is thus reduced to a smaller 2-D search followed by a 1-D search. The system and method may be applied to downlink initial acquisition in mobile WiMAX systems.
Abstract:
A method and apparatus for subcarrier selection for systems is described. In one embodiment, the system employs orthogonal frequency division multiple access (OFDMA). In one embodiment, a method for subcarrier selection comprises a subscriber measuring channel and interference information for subcarriers based on pilot symbols received from a base station, the subscriber selecting a set of candidate subcarriers, providing feedback information on the set of candidate subcarriers to the base station, and receiving an indication of subcarriers of the set of subcarriers selected by the base station for use by the subscriber.
Abstract:
A system and method of wireless communication power control is provided which allows for adjusting power levels without requiring high bandwidth for control. Embodiments allocate subcarriers into unequal power groups, each group having a consistent subcarrier power level. Using interference parameter information from a user, a subcarrier is assigned from a group having adequate power to maintain the user's required power level. In general, users with higher power requirements, such as those near cell boundaries, will be assigned subcarriers from a group having a higher power level. A cell may use a different allocation than a neighbor, so that subcarriers with the highest power level in one cell may not also have the highest power level in a neighboring cell. Such diversity may reduce inter-cell interference of the subcarriers near a cell boundary, since no two subcarriers are transmitted with highest power simultaneously by neighboring base stations.
Abstract:
Advantage is taken of the fact that downlink quality is always known at a mobile station. Thus, a base station may use preference information from the mobile station as a basis for assigning a channel, rather than requiring the details of channel conditions. In one embodiment, the base station pre-selects orthogonal beam-forming vectors for subcarriers and broadcasts the channels into different sectors of the region served by base station. The mobile stations then determine a priority (based for example on received quality) order of the codes of the received vectors. This priority order is sent uplink to the base station and the base station then, based on a priority listing of vectors from the mobile station, selects the downlink sub-channel. The vectors may be established with some degree of randomness, or may be based on a desired beam coverage profile.