Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
A tele-presence system that includes a portable robot face coupled to a remote station. The robot face includes a robot monitor, a robot camera, a robot speaker and a robot microphone. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The portable robot face can be attached to a platform mounted to the ceiling of an ambulance. The portable robot face can be used by a physician at the remote station to provide remote medical consultation. When the patient is moved from the ambulance the portable robot face can be detached from the platform and moved with the patient.
Abstract:
Disclosed herein are various embodiments of systems and methods that may be utilized in a variety of videoconferencing applications. According to various embodiments, techniques may be utilized to dynamically allocate and adjust bandwidth utilization during a videoconferencing session. A data network may allow for the transmission of data between two or more endpoints. The data exchanged between the endpoints may include video data, audio data, control data, and status data. Control data may be utilized in various embodiments to operate a robotic videoconferencing endpoint. Accordingly, various components of a data network connecting videoconferencing endpoints may transmit data wirelessly.
Abstract:
A robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.
Abstract:
A remote control station that controls a robot through a network. The remote control station transmits a robot control command that includes information to move the robot. The remote control station monitors at least one system parameter and scales the robot control command as a function of the system parameter. For example, the remote control station can monitor network latency and scale the robot control command to slow down the robot with an increase in the latency of the network. Such an approach can reduce the amount of overshoot or overcorrection by a user driving the robot.
Abstract:
The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
Abstract:
A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
Abstract:
A remote controlled robot with a head that supports a monitor and is coupled to a mobile platform. The mobile robot also includes an auxiliary camera coupled to the mobile platform by a boom. The mobile robot is controlled by a remote control station. By way of example, the robot can be remotely moved about an operating room. The auxiliary camera extends from the boom so that it provides a relatively close view of a patient or other item in the room. An assistant in the operating room may move the boom and the camera. The boom may be connected to a robot head that can be remotely moved by the remote control station.
Abstract:
A tele-presence system that includes a remote device coupled to a control station through a communication link. The remote device includes a remote monitor, a remote camera, a remote speaker and a remote microphone. Likewise, the control station includes a station monitor, a station camera, a station speaker and a station microphone. The control station displays a plurality of graphical icons that each represents a different type of communication link between the control station and the remote device. The graphical icons can be selected to allow a user of the control station to change the communication link between the remote device and its initial node.
Abstract:
A telepresence device may relay video, audio, and/or measurement data to a user operating a control device. A user interface may permit the user to quickly view and/or understand temporally and/or spatially disparate information. The telepresence device may pre-gather looped video of spatially disparate areas in an environment. A temporal control mechanism may start video playback at a desired point in a current or historical video segment. Notations may be associated with time spans in a video and recalled by capturing an image similar to a frame in the time span of the video. An area of interest may be selected and video containing the area of interest may be automatically found. Situational data may be recorded and used to recall video segments of interest. The telepresence device may synchronize video playback and movement. A series of videos may be recorded at predetermined time intervals to capture visually trending information.