Abstract:
A method of powerline communications in a powerline communications (PLC) network including a first node and at least a second node. The first node transmits a data frame to the second node over a PLC channel. The second node has a data buffer for storing received information. The second node runs a flow control algorithm which determines a current congestion condition or a projected congestion condition of the data buffer based on at least one congestion parameter. The current congestion condition and projected congestion condition include nearly congested and fully congested. When the current or projected congestion condition is either nearly congested or fully congested, the second node transmits a BUSY including frame over the PLC channel to at least the first node. The first node defers transmitting of any frames to the second node for a congestion clearing wait time.
Abstract:
A method of powerline communications (PLC) includes compiling a data frame for physical layer (PHY) by a first communications device at a first communications node on a powerline of a PLC network. The data frame includes a single tone PHY header portion and a data payload portion in a set of tones including at least one tone having a frequency different from a frequency of the single tone. The PHY header portion includes tone mask identification information identifying the set of tones. The first communications device transmits the data frame over the powerline to a second communications device at a second communications node on the powerline. The second communications device receives the data frame, and decodes the data payload using the tone mask identification information in the PHY header portion.
Abstract:
Systems and methods for designing, using, and/or implementing hybrid communication networks are described. In various embodiments, these systems and methods may be applicable to power line communications (PLC). For example, one or more of the techniques disclosed herein may include methods to coordinate medium-to-low voltage (MV-LV) and low-to-low voltage (LV-LV) PLC networks when the MV-LV network operates in a frequency subband mode and the LV-LV network operates in wideband mode (i.e., hybrid communications). In some cases, MV routers and LV routers may have different profiles. For instance, MV-LV communications may be performed using MAC superframe structures, and first-level LV to lower-level LV communications may take place using a beacon mode. Lower layer LV nodes may communicate using non-beacon modes. Also, initial scanning procedures may encourage first-to-second -level LV device communications rather than MV-to-first-level LV connections.
Abstract:
Systems and methods for designing, using, and/or implementing media access control (MAC) protocols with subbanding are described. In some embodiments, a method may include receiving a beacon packet during one of a plurality of beacon slots of a superframe, each beacon slot corresponding to one of a plurality of different downlink subbands. The method may also include identifying, based on the received beacon packet, contention access periods following the beacon slots, each of the contention access periods corresponding to one of a plurality of different uplink subbands. The method may further include transmitting an information packet over each of the plurality of uplink subbands during the contention access periods. Then, the method may include receiving, during a guaranteed time slot following the contention access periods, an indication of a selected one of the plurality of uplink subbands to be used in a subsequent communications.
Abstract:
A method of powerline communications including a first node and at least a second node on a PLC channel in a PLC network. The first node sends a physical layer (PHY) data frame on the PLC channel including a preamble, PHY header, a MAC header and a MAC payload. The PHY header includes a destination address field having a destination address therein. The second node receives the data frame. The second node compares its network address to the destination address before decoding the MAC header and MAC payload, providing power savings by allowing the second node to not decode the MAC header or MAC payload if its network address does not match the destination address in the PHY header of the data frame.
Abstract:
A method of powerline communications in a powerline communications (PLC) network including a first node and at least a second node. The first node transmits a data frame to the second node over a PLC channel. The second node has a data buffer for storing received information. The second node runs a flow control algorithm which determines a current congestion condition or a projected congestion condition of the data buffer based on at least one congestion parameter. The current congestion condition and projected congestion condition include nearly congested and fully congested. When the current or projected congestion condition is either nearly congested or fully congested, the second node transmits a BUSY including frame over the PLC channel to at least the first node. The first node defers transmitting of any frames to the second node for a congestion clearing wait time.
Abstract:
Systems and methods for designing, using, and/or implementing non-beacon network communications using frequency subbands are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include transmitting a beacon request message over a given one of a plurality of frequency subbands, receiving a plurality of beacons in response to having transmitted the beacon request message, each of the plurality of beacons received over a respective one of the plurality of frequency subbands, and calculating a downlink quality report based, at least in part, upon the received beacons. The method may also include transmitting the downlink quality report over each of the plurality of frequency subbands and receiving a subband allocation command in response to having transmitted the downlink quality report, the subband allocation command indicating a downlink subband assignment and an uplink subband assignment.
Abstract:
A method of communications in a network having plurality of nodes including a base node (BN) and a plurality of levels (i) each including at least one service node (SN). The number (Ni(t)) of SNs registered in each of a plurality of i are determined. The current Keep Alive timer out (KA_TO) value for a KA timer at the BN is dynamically adjusted to an updated KA_TO value based on Ni(t) and i. Dynamically adjusting KA_TO values reduces the KA message overhead the network compared to known KA_TO value implementations.
Abstract:
A method of communicating in a network having a plurality of nodes including a base node (BN), and a plurality of service nodes (SNs) having at least one switch node (SW) and at least one terminal node (TN). The method includes at least one of a) a first SN from the plurality of SNs receiving (i) a data/ALV_B/ACK frame from the BN or (ii) a beacon from the BN or SW, and restarting a first KA timer at the first SN upon (i) or (ii), and b) restarting an ALV_S timer at the BN for the first SN upon receiving a data/ALV_S/ACK frame from the first SN.
Abstract:
Segmented frames of data may be transmitted from a transmitting device using conflict free slots (CFS) within a carrier sense multiple access with collision avoidance (CSMA/CA) protocol on a noisy media. At a receiver, a segmented frame of data is received. The data is represented by a plurality of tones. If requested by the transmitter, a tone map response command is prepared that specifies a set of optimized tone map parameters by analyzing the received frame of data. Any previously determined tone map response commands to the transmitting device are deleted. A sequence of frame segments may be received in conflict free slots, but only one tone map response is transmitted to the transmitting device after receiving the entire sequence of frame segments.