Abstract:
Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150° C. or less and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.
Abstract:
Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: wherein: i) A is a spacer having the structure O, S, SO2, —NH—, —N(CH2)n, wherein n=1-10, —(CH2)n—CH3—, wherein n=1-10, SO2-Ph, CO-Ph, wherein R5, R6, R7 and R8 each are independently —H, —NH2, F, Cl, Br, CN, or a C1-C6 alkyl group, or any combination of thereof; ii) R9, R10, R11, R12, or R13 each independently are —H, —CH3, —NH2, —NO, —CHnCH3 where n=1-6, HC═O—, NH2C═O—, —CHnCOOH where n=1-6, —(CH2)n—C(NH2)—COOH where n=1-6, —CH—(COOH)—CH2—COOH, —CH2—CH(O—CH2CH3)2, —(C═S)—NH2, —(C═NH)—N—(CH2)nCH3, where n=0-6, —NH—(C═S)—SH, —CH2—(C═O)—O—C(CH3)3, —O—(CH2)n—CH—(NH2)—COOH, where n=1-6, —(CH2)n—CH═CH wherein n=1-6, —(CH2)n—CH—CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.
Abstract:
Provided is a cylindrical battery in which an electrode assembly fabricated by rolling a cathode/separator/anode and an electrolyte are provided in a cylindrical can, wherein a cap assembly mounted on the opening top of the cylindrical can comprises: a safety vent provided with a predetermined notch, to allow breakage due to high-pressure gas of the battery, a current interruptive device to interrupt current, welded to the bottom of the safety vent, and a gasket for the current interruptive device to surround the periphery of the current interruptive device, wherein the current interruptive device comprises two or more through holes to allow exhaustion of gas, wherein the through holes have a size of 20 to 50% with respect to the total area of the current interruptive device.
Abstract:
A residential Ethernet switching device for sub frame-based switching in a residential Ethernet system is provided. The device includes a plurality of reception data path processors for parsing a residential Ethernet frame inputted to the residential Ethernet switching device, as respective residential Ethernet sub frames, and outputting the parsed residential Ethernet sub frames, a switch fabric for switching the residential Ethernet sub frames inputted through the plurality of reception data path processors, a plurality of transmission data path processors for providing an output path for multiplexing and outputting the residential Ethernet sub frames switched through the switch fabric, and a local cycle counter connected to the plurality of reception data path processors, the switch fabric, and the plurality of transmission data path processors, and providing cycle counter information on the respective residential Ethernet sub-frames.
Abstract:
Disclosed is a wavelength-division-multiplexed passive optical network (WDM-PON) using a light source wavelength-locked by an injected incoherent light. The WDM-PON system includes: an injection light generating section, which includes a broadband light source emitting an incoherent optical signal, so as to provide a route for an uplink signal and a route for a downlink signal according to time; a central office for receiving the incoherent optical signal generated by the injection light generating section, transmitting a downlink light by wavelength-locking the received incoherent optical signal, receiving an uplink optical signal from a subscriber unit, and detecting a light from the received uplink optical signal; and the subscriber unit for receiving the incoherent optical signal generated by the injection light generating section, transmitting an uplink light by wavelength-locking the received incoherent optical signal, receiving a downlink optical signal from a central office, and detecting a light from the received downlink optical signal.
Abstract:
A passive optical network includes a central office generating multiplexed downstream optical signals, a plurality of subscriber units provided with the downstream optical signals of the corresponding wavelengths, and a remote node for relaying signals between the subscriber units and the central office. The central office comprises a broadband light source for generating a light of gain-clamped wide wavelength band with a gain channel and a plurality of incoherent channels; a plurality of downstream light sources for generating downstream optical signals the wavelengths of which are locked by the incoherent channels of the corresponding wavelengths; and a multiplexer/de-multiplexer for de-multiplexing the incoherent channels and outputting the de-multiplexed channels to the corresponding downstream light source and for multiplexing the upstream optical signals and outputting the multiplexed optical signals.
Abstract:
A wavelength division multiplexed passive optical network (WDM PON) includes a central office that has: a broadband light source, a first wavelength division multiplexer to spectrum-slice light outputted from the light source, semiconductor optical amplifiers or variable optical attenuators, each modulating an associated one of spectrum-sliced lights in accordance with input data, and a second wavelength division multiplexer to multiplex optical signals respectively outputted from the semiconductor optical amplifiers. A remote node, connected to the central office via a main optical fiber, distributes the optical signals to distribution optical fibers, and, in, turn, to respective optical network units.
Abstract:
The present invention relates to a siloxane monomer containing a trifluorovinylether group and a sol-gel hybrid polymer prepared using the monomer, more particularly to siloxane monomer with novel structure prepared by reacting alkoxychlorosilane with a Grignard reagent containing a trifluorovinylether (—OC2F3) group, a method of preparing the same and a sol-gel hybrid polymer containing a perfluorocyclobutane (PFCB) group prepared from sol-gel reaction using said siloxane monomer containing a trifluorovinylether group.
Abstract:
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Abstract:
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.