Abstract:
An array substrate for an in-plane switching (IPS) mode liquid crystal display (LCD) device includes a gate line formed along a first direction on a substrate, a storage line formed along the first direction on the substrate and spaced apart from the gate line, a data line formed along a second direction on the substrate, the data line defining a pixel region by crossing the gate line, a thin film transistor at a crossing of the gate line and the data line, the thin film transistor having a gate electrode, a semiconductor layer, a source electrode, and a drain electrode, a pixel electrode connected to the drain electrode, a common electrode having a plurality of vertical portions connected to the storage line, the common electrode having outermost vertical portions adjacent and parallel to the data line and spaced apart from the pixel electrode, and a semiconductor line beneath the data line and extending from the semiconductor layer to both sides of the data line to cover portions of the common electrodes adjacent to the data line.
Abstract:
A liquid crystal display (LCD) device includes an upper substrate, a lower substrate including an active area having a plurality of thin film transistors and a non-active area, a first resin black matrix beneath the upper substrate at a position corresponding to the active area, a black seal pattern along edges of the upper substrate, and a second resin black matrix between the active area and the black seal pattern.
Abstract:
An apparatus for cutting liquid crystal display panels is disclosed in the present invention. The apparatus includes at least one table receiving bonded mother substrates having a plurality of unit liquid crystal display panels, at least one cutting wheel forming a scribing line on a surface of the bonded mother substrates, and a suction unit coupled to the at least one cutting wheel and sucking in glass debris on the surface of the bonded mother substrates.
Abstract:
A liquid crystal display device includes first and second substrates, a seal pattern disposed between outer peripheral portions of the first and second substrates, and a plurality of venting portions formed in the seal pattern at corner portions of the first and second substrates for venting air confined between the first and second substrates.
Abstract:
A liquid crystal display (LCD) device includes a first substrate having at least one pixel region and a black matrix, a common electrode beneath the first substrate, a first alignment layer beneath the common electrode, a first linear polarizer along an outer side surface of the first substrate, a second substrate having at least one pixel portion corresponding to the pixel region of the first substrate, the pixel portion being divided into first and second areas, gate and data lines provided on both the first and second areas of the second substrate, the gate and data lines crossing each other, a first switching element provided at a cross point of the gate and data lines within the first area, a second switching element formed at a cross point of the gate and data lines within the second area, a first pixel electrode within the first area connected to the first switching element, a second pixel electrode within the second area connected to the second switching element, a first retardation layer having a first phase retardation value formed beneath the first pixel electrode, a second retardation layer having a second phase retardation value different from the first phase retardation value formed beneath the second pixel electrode, a second alignment layer provided on the first and second pixel electrodes, a liquid crystal layer disposed between the first and second alignment layers, and a second linear polarizer provided along an outer side surface of the second substrate.
Abstract:
A signal driving circuit of a liquid crystal display device includes a column driver for converting video data input into analog signals and applying said analog signals to pixels of a liquid crystal panel, a gamma voltage circuit for applying a plurality of signal voltages to the column driver and an external voltage supplying unit for generating and adjusting signal voltages and a common voltage applied to the gamma voltage circuit and the common electrode, respectively.
Abstract:
A method for manufacturing an LCD device having gate and data lines includes forming an active layer on an insulating substrate; forming a gate insulating layer over a surface of the insulating substrate including the active layer; forming a gate line and a gate electrode on the gate insulating layer, so that the gate electrode is positioned above the active layer; forming a photoresist pattern on the gate electrode and on the gate line where the gate and the data lines cross each other, wherein, the photoresist pattern surrounds the gate electrode and the gate line; forming source and drain regions in the active layer by injecting impurity ions into the active layer using the photoresist pattern as a mask; removing the photoresist pattern; forming an insulating interlayer over the entire surface of the insulating substrate, the insulating interlayer having first contact holes exposing predetermined portions of the source and drain regions; forming a data line electrically connected to the source region and crossing over the gate line on the insulating interlayer; forming a drain electrode; forming a passivation layer over the surface of the insulating substrate, the passivation layer having a second contact hole exposing a predetermined portion of the drain electrode; and forming a pixel electrode to electrically connect to the drain region through the second contact hole.
Abstract:
An LCD device includes an insulating substrate; a gate line disposed on the insulating substrate; a first data line disposed perpendicular to the gate line and separated from the gate line; a second data line disposed crossing the gate line on a same line as the first data line; a thin film transistor disposed substantially at a crossing point of the gate line and the second data line; an active layer disposed below the second data line, a source electrode, and a drain electrode of the thin film transistor; a third data line disposed perpendicular to the gate line to define a pixel region to electrically connect the first and second data lines with each other; and a pixel electrode disposal in the pixel region.
Abstract:
A liquid crystal display device includes a first substrate having a plurality of thin film transistors and first electrodes connected to the thin film transistor, a second substrate having a plurality of color filters and second electrodes, and a seal pattern formed along edges of one of the first and second substrates, the seal pattern having least one injection hole having a trapezoid shape, wherein a width of the injection hole decreases from a side exterior to the first and second substrates to a side interior to the first and second substrates.
Abstract:
An apparatus for fabricating a liquid crystal display includes a vessel for containing a material for a spacer, an ink-jet head for jetting the material onto a plate and a light source for pre-curing the material by radiating light onto the material as the material is jetted from the ink-jet head. A method for fabricating a liquid crystal display includes the steps of aligning an ink-jet device relative to at least one of an upper plate and a lower plate, jetting a material for a spacer from the ink-jet device and pre-curing the material by irradiating the material with light while the material is jetted from the ink-system before the material impacts upon the at least one of the upper plate and a lower plate.