Abstract:
A drone propeller of the present invention includes a plurality of blades and a rotary shaft, wherein the blades comprise a rotation retaining unit connected to the rotary shaft side, a separation and detachment unit that is on the outer side of the blades and is to be separated when damaged, and a breakage inducing unit which connects the rotation retaining unit and the separation and detachment unit and is damaged during a collision.
Abstract:
A gate driving circuit having improved driving capability and maintaining reliability even after a prolonged period of use includes a shift register having a plurality of stages cascaded to one another, each of the plurality of stages including a pull-up unit, a pull-down unit, a discharging unit, and a holding unit, wherein at least one of the discharging unit and the holding unit includes an amorphous silicon thin film transistor and a polysilicon thin film transistor connected in parallel to each other.
Abstract:
In a gate driving circuit and a display apparatus, the gate driving circuit comprises a plurality of stages. At least one of the stages comprises a pull-up section responsive to a first node signal; a pull-down section responsive to a second input signal; a discharging section discharging the first node signal in response to the second input signal; a first holding section responsive to the first clock signal, maintaining the first node signal at the off-voltage; and a second holding section responsive to the second clock signal, maintaining the first node signal at the off-voltage. The second holding section has a greater transistor width-to-length ratio than the first holding section. Therefore, an abnormal gate-on signal is less likely to occur, reducing driving defects of the display apparatus.
Abstract:
A liquid crystal display includes a first gate electrode, a storage electrode having a body and an extension, a first semiconductor formed on a gate insulating layer, a first drain electrode formed on the first semiconductor, separated from a first source electrode, and having an end portion overlapping the first gate electrode, and an expansion overlapping the body of the storage electrode and distanced from the end portion with a connection connecting the end portion and the expansion and overlapping the extension of the storage electrode, a passivation layer having a contact hole exposing the expansion of the first drain electrode, and a first field-generating electrode connected to the first drain electrode through the contact hole.
Abstract:
An improved absolute position detection method is provided for a stroke sensing cylinder which includes a magnetic scale detecting step for obtaining a plurality of sine wave form voltages having different phases using a magnetic sensor unit in accordance with a driving operation of the cylinder. A wave form generation step is also provided for converting the sine wave form voltage obtained in the magnetic scale detection step into a square wave form and generating a triangle wave form having the same period as the thusly converted square wave form. A first absolute position value detection and stroke direction judging step is then provided for judging a first absolute position value and stroke direction of the cylinder using a pair of square and triangle wave forms generated in the wave form generation step. Lastly, a second absolute position value computation and storing step is provided for computing and storing a second absolute position value having a predetermined value based on the first absolute position value. The method of the present invention is directed to detecting a magnetic flux change of a magnetic scale using a plurality of magnetic sensors. The magnetic scale is disposed along the cylinder rod and includes at least one different magnetic scale processing period contained within a regularly protruded and recessed portion. Signal-processing is achieved using a microprocessor and a 1/N-dividing counter. The thusly signal-processed wave forms are counted and an absolute position and stroke direction is determined.
Abstract:
A display apparatus includes a panel part having a plurality of gate lines, a plurality of data lines, a plurality of pixels, a data driver and a gate driver part. Each pixel of the plurality of pixels includes a first sub-pixel and a second sub-pixel. The first sub-pixel is connected to a first gate line of the plurality of gate lines and the second sub-pixel is connected to a second gate line of the plurality of gate lines. The first sub-pixel and the second sub-pixel are each commonly connected to one data line of the plurality of data lines. The gate driver part is disposed on the panel part and applies a plurality of gate signals to the plurality of gate lines. A current gate signal of the plurality of gate signals is temporally overlapped with a previous gate signal for a predetermined time interval.
Abstract:
A display apparatus includes a gate driver which sequentially outputs a gate signal at a high state in response to a gate control signal and a data driver which converts image data into a data signal in response to a data control signal. The display apparatus further includes a display panel which includes a plurality of gate lines which sequentially receive the gate signal, a plurality of data lines which receive the data signal and a plurality of pixels connected to the gate and data lines and which receive the data signal in response to the gate signal to display an image. The polarity of the data signal is inverted after the gate signal transitions to a low state.
Abstract:
In a gate driving circuit and a display apparatus having the gate driving circuit, a pull-up transistor of a present stage among plural stages, which are connected one after another to each other and sequentially output a gate signal, pulls up a present gate signal output through an output terminal to a gate-on voltage. A buffer transistor is connected to a control terminal of the pull-up transistor to receive a previous output signal from a previous stage and to turn on the pull-up transistor. The buffer transistor has a chargeability that is about two times or greater than the chargeability of the pull-up transistor. Thus, the size of the pull-up transistor may be reduced, thereby preventing a malfunction of the gate driving circuit when the gate driving circuit is operated under conditions of high temperature or low temperature.
Abstract:
A liquid crystal display includes a first gate electrode, a storage electrode having a body and an extension, a first semiconductor formed on a gate insulating layer, a first drain electrode formed on the first semiconductor, separated from a first source electrode, and having an end portion overlapping the first gate electrode, and an expansion overlapping the body of the storage electrode and distanced from the end portion with a connection connecting the end portion and the expansion and overlapping the extension of the storage electrode, a passivation layer having a contact hole exposing the expansion of the first drain electrode, and a first field-generating electrode connected to the first drain electrode through the contact hole.
Abstract:
A liquid crystal display includes a first gate electrode, a storage electrode having a body and an extension, a first semiconductor formed on a gate insulating layer, a first drain electrode formed on the first semiconductor, separated from a first source electrode, and having an end portion overlapping the first gate electrode, and an expansion overlapping the body of the storage electrode and distanced from the end portion with a connection connecting the end portion and the expansion and overlapping the extension of the storage electrode, a passivation layer having a contact hole exposing the expansion of the first drain electrode, and a first field-generating electrode connected to the first drain electrode through the contact hole.