Abstract:
A Multi-Point HSDPA system may provide downlink aggregation from multiple cells for a single receive antenna UE without requiring an advanced Type 3i receiver, by providing switching-based scheduling from one of the cells based on channel conditions of the respective cells, as reported by the UE. For example, the UE may monitor the HS-SCCH from both cells so that it may decode the HS-DSCH in any particular TTI as data is scheduled. The UE may further transmit a CQI for each of the cells, so that scheduling decisions between the cells at each TTI may be dynamically made to provide the downlink packet from the better of the cells.
Abstract:
A method for providing multiple-user multiple-input and multiple-output in a high-speed packet access system is described. Channel quality indicators are received from a plurality of dual stream capable wireless communication devices. A preferred beam and a secondary beam are determined for each wireless communication device using the channel quality indicators. Wireless communication devices with preferred beams orthogonal to each other are paired. A wireless communication device pair is selected. Data streams for the selected wireless communication device pair are scheduled in the same transmission time interval using an orthogonal variable spreading factor code.
Abstract:
A method for wireless communications is provided. The method includes applying independent power controls to two or more carriers from a set of high speed packet access signals. The method includes monitoring power across the two or more carriers to determine power levels for the set of high speed packet access signals. The method also includes automatically scaling at least one of the independent power controls in view of the determined power levels for the set of high speed packet access signals. The method also includes setting the minimum power offset of the data channel independently on each carrier.
Abstract:
A method for wireless communications is provided. The method includes applying independent power controls to two or more carriers from a set of high speed packet access signals. The method includes monitoring power across the two or more carriers to determine power levels for the set of high speed packet access signals. The method also includes adjusting at least one of an open loop control, an inner loop control, or an outer loop control in view of the power levels for the set of packet access signals.
Abstract:
Techniques for reporting acknowledgement (ACK) information and channel quality indication (CQI) information in a wireless communication system are described. A user equipment (UE) may be able to receive data from up to two cells with dual-cell operation. The UE may determine CQI information for a first cell, determine CQI information for a second cell, and send the CQI information for both cells on a feedback channel with a single channelization code. The UE may process a control channel from each cell and, if control information is received from the cell, may further process a data channel from the cell to receive data sent to the UE. The UE may determine ACK information for each cell based on processing results for the data and control channels from that cell. The UE may send the ACK information for both cells on the feedback channel with the single channelization code.