Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
The apparatus and methods described herein are used to provide a communication quality feedback of an end-to-end communication path between an application transmitter and an application receiver. One method includes transmitting data from the application transmitter to the application receiver via the end-to-end communication path, the end-to-end communication path having at least one wireless link with a wireless transmitter and a wireless receiver, generating, at the wireless transmitter, a first communication quality feedback message, and transmitting the first communication quality feedback message from the wireless transmitter to the application transmitter in a standardized format.
Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
Systems and methodologies are described that facilitate controlling transmission power of a wireless terminal. A downlink power control channel segment may include an Orthogonal Frequency Division Multiplexing (OFDM) tone-symbol that may comprise a first component and a second component. The first component may be an in-phase (I) component and the second component may be a quadrature (Q) component, for example. A power command may be transmitted in the first component. Further, information associated with a wireless terminal may be transmitted in the second component. The information associated with the wireless terminal may be, for instance, a portion of a scrambling mask associated with the wireless terminal.
Abstract:
Systems and methodologies are described that facilitate controlling transmission power of a wireless terminal. A downlink power control channel segment may include an Orthogonal Frequency Division Multiplexing (OFDM) tone-symbol that may comprise a first component and a second component. The first component may be an in-phase (I) component and the second component may be a quadrature (Q) component, for example. A power command may be transmitted in the first component. Further, information associated with a wireless terminal may be transmitted in the second component. The information associated with the wireless terminal may be, for instance, a portion of a scrambling mask associated with the wireless terminal.
Abstract:
Systems and methodologies are described that facilitate controlling transmission power of a wireless terminal. A downlink power control channel segment may include an Orthogonal Frequency Division Multiplexing (OFDM) tone-symbol that may comprise a first component and a second component. The first component may be an in-phase (I) component and the second component may be a quadrature (Q) component, for example. A power command may be transmitted in the first component. Further, information associated with a wireless terminal may be transmitted in the second component. The information associated with the wireless terminal may be, for instance, a portion of a scrambling mask associated with the wireless terminal.
Abstract:
Methods and apparatus for efficient two-stage paging wireless communications systems are described. Wireless terminals are assigned to paging groups. A few first paging message information bits are modulated (using non-coherent modulation) into a first paging signal and communicated from a base station to wireless terminals. WTs wake-up, receive the first paging signal and quickly ascertain whether its paging group should expect a second paging signal, if so, the WT is operated to receive the second paging signal; otherwise, the WT goes back to sleep conserving power. The base station modulates (using coherent modulation) a number of second message information bits into a second paging signal and transmits the signal to WTs. From the information in first and second paging signals, a WT can determine that it is the paged WT and process the paging instructions. The intended paged WT can transmit an acknowledgement signal on a dedicated uplink resource.
Abstract:
Methods and apparatus for making handoff decisions in an access terminal which can support both best effort and QoS traffic, e.g., when operating in a best effort and QoS mode of operation, respectively, are described. The access terminal receives an indicator indicating the fraction of communications resources not utilized for QoS service and information indicating a number of best effort users being supported by the attachment point. During QoS mode operation, connections to attachment points which can support the access terminal's minimal QoS requirements are identified and then from among the identified set, the attachment point which can provide a connect supporting the most best effort traffic from the access terminal is selected. In best effort mode operation the access terminal selects the attachment point connection which will provide the greatest amount of throughput to the access terminal for best effort traffic.
Abstract:
The present invention involves apparatus and methods to perform wireless terminal transmission power control. The invention uses novel and highly efficient methods to: convey power control information, specify power control level adjustments, recognize power control information, limit interference in the power control signaling, and recognize corrupted power control signaling, thus conserving wireless terminal energy and minimizing power control signaling and associated bandwidth. Base stations send analog power control command signals, with a continuous range of control levels, to wireless terminals for transmission power adjustments. Power control signals include two components which can be used to convey information, e.g., power control commands, signal quality, device identity information. For zero power adjustment, the control component signal is not transmitted. For a non-zero adjustment, power control signals are sent using control ranges and limits, known to the base station and wireless terminal, with the scaling adjusted or synchronized based upon feedback information.
Abstract:
Systems and methodologies are described that facilitate scheduling transmission, upon an uplink traffic channel in Orthogonal Frequency Division Multiplexing (OFDM) environments. Uplink scheduling may include user selection and rate selection. Further, user selection may be based on a token mechanism that provides control over fairness of allocation to disparate users. Moreover, rate selection may be based upon considerations of uplink interference mitigation.