Abstract:
Certain embodiments of the present invention provide robotic control modules for use in a robotic control system of a vehicle, including structures, systems and methods, that can provide (i) a robotic control module that has multiple functional circuits, such as a processor and accompanying circuits, an actuator controller, an actuator amplifier, a packet network switch, and a power supply integrated into a mountable and/or stackable package/housing; (ii) a robotic control module with the noted complement of circuits that is configured to reduce heat, reduce space, shield sensitive components from electro-magnetic noise; (iii) a robotic control system utilizing robotic control modules that include the sufficiently interchangeable functionality allowing for interchangeability of modules; and (iv) a robotic control system that distributes the functionality and processing among a plurality of robotic control modules in a vehicle.
Abstract:
A speed control method of a vehicle including the steps of obtaining a steering angle, a velocity error and a distance error. The velocity and the distance error being determined by mathematical combinations of a GPS position, a required path and speed set points. The steering angle, velocity errors and distance error are applied to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. An output from the velocity rule base is defuzzified to produce a speed signal.
Abstract:
A steering control method including the steps of obtaining a heading error, obtaining a velocity value, obtaining a distance error, applying the heading error and defuzzifying an output from a steering rule base. The velocity value and the distance error are applied along with the heading error to fuzzy logic membership functions to produce an output that is applied to a steering rule base. An output from the steering rule base is defuzzified to produce a steering signal.
Abstract:
A flow control valve for selectively routing a coolant in a dual-zone heater system is provided. The flow control valve includes a housing and a flow control device. The housing includes an inlet port, a bypass outlet, a front heater outlet, and a rear heater outlet communicating through an internal cavity. The flow control device, which can be a cylinder, sphere, etc., is rotatably positioned in the internal cavity. The flow control device has an axial channel and generally radial aperture. The axial channel transports the coolant received from the inlet port through the flow control device, and the aperture delivers the coolant to one or more of the bypass outlet, the front heater outlet, and the rear heater outlet as the flow control device is rotated. In this way the circuit is not deadheaded.
Abstract:
A human perception model for a vehicle steering control method including the steps of obtaining a heading error, obtaining a velocity value, obtaining a distance error, applying the heading error, inputting a measure of operator aggressiveness and defuzzifying an output from a steering rule base. The velocity value and the distance error are applied along with the heading error to fuzzy logic membership functions to produce an output that is applied to a steering rule base. A measure of the operator aggressiveness is input to the steering rule base. An output from the steering rule base is defuzzified to produce a steering signal.
Abstract:
The present invention relates to a system and method for intelligent mobile vehicles that can be used in unmanned robotic or manned modes, the system having a plurality of controllers, with a low-level controller that controls basic operating functions for the mobile vehicles, and a high-level controller used to issue commands for unmanned robotic operation. Division of features between different controllers enables an ability to operate the mobile vehicle even if the high-level controller should fail or experience faults.
Abstract:
An elevating scraper adapted to be towed by a tractor to perform earth-grading operations and the like including a vehicle frame, towing means on the frame, and a forwardly open scraper bowl located on the frame and terminating in a lower, forwardly extending scraper edge. An upwardly and rearwardly extending elevating conveyor assembly is mounted on the frame forwardly of the scraper bowl and spaced from the scraper edge, and a support surface is situated closely adjacent the conveyor assembly and cooperates therewith so that material may be elevated by the conveyor assembly and supported during such elevation by the support surface and moved into the scraper bowl. The support surface is perforate so that material of large size will be directed to the scraper bowl while smaller sized material will pass through the support surface to the underlying terrain.
Abstract:
An approach that smoothes a cryptographic function's timing footprint is presented. A processor includes a “function timing smoother” that smoothes out spikes in the amount of time that a particular cryptographic function requires to execute. When a cryptographic function executes, the function timing smoother tracks the amount of time that the cryptographic function executes (current execution time) and compares the time with the amount of time that the same cryptographic function took for a previous execution (previous execution time). When the current execution time is less than the previous execution time, the function timing smoother adds instructions or varies an execution unit's clock speed in order to increase the cryptographic function's current execution time. Using this approach, a malicious user is not able to decipher sensitive information from the cryptographic function's timing footprint.
Abstract:
A human perception model for a speed control method obtains a steering angle, a velocity error and a distance error. The steering angle and a measure of operator aggressiveness are applied to the model. The output is defuzzified. The steering angle, the velocity error and the distance error are applied to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. The measure of operator aggressiveness is input to the velocity rule base. The output from the velocity rule base is defuzzified to produce a speed signal.