Abstract:
The present invention provides a method for fabricating an organic electroluminescence device comprising forming an organic layer on the substrate by irradiating a laser beam onto a predetermined region of a donor substrate by a laser irradiation apparatus equipped with a diffractive optical element. A method for fabricating an organic electroluminescence device according to the present invention has merits that energy efficiency of a laser beam is improved by using a diffractive optical element when forming an organic film layer pattern by LITI, and fabrication process of the organic electroluminescence device is simplified and fabrication cost of the organic electroluminescence device is reduced by replacing a mask only when forming a laser beam having various shapes to fabricate the organic electroluminescence device.
Abstract:
Provided are a laser irradiation apparatus and method of fabricating an organic light emitting display using the same. The laser irradiation apparatus includes a mask positioned below the laser generator, and the mask is patterned such that lengths of an upper portion and a lower portion of a mask pattern are patterned longer than a length of a middle portion of the mask pattern with respect to the scanning direction. The method of fabricating an organic light emitting display includes scanning a laser beam on a predetermined region of the donor substrate using the laser irradiation apparatus to form an organic layer pattern on the substrate. When the organic layer pattern is formed using a laser induced thermal imaging (LITI) method, the transfer may be carried out using a laser beam having low energy, laser beam efficiency may be enhanced, the organic layer may be less damaged, and the quality of the organic layer pattern to be transferred may also be enhanced.
Abstract:
Provided is a method of fabricating an organic light emitting display. The method includes forming an organic layer pattern on a substrate by irradiating a predetermined region of a donor substrate with a laser beam using a laser irradiation apparatus, the laser irradiation apparatus having a spatial light modulator (SLM). The spatial light modulator is used to form the organic layer pattern using the LITI method. Accordingly, it is possible to adjust various types of incident light to homogeneous and to have a desired profile. Therefore, there is provided a method of fabricating an organic light emitting display which is capable of forming an organic layer pattern without using a mask.
Abstract:
A laser inducted thermal imaging method includes preparing a donor element and a substrate; facing a transfer layer of the donor element to the substrate and then patterning the transfer layer onto the substrate; and annealing the patterned substrate.
Abstract:
Provided are a donor substrate for laser induced thermal imaging (LITI) and method of fabricating an organic light emitting display (OLED) using the same donor substrate. A conductive frame is disposed on an outer portion of the donor substrate and connected to an anti-static layer. The conductive frame of the donor substrate is connected to a grounded stage. In this structure, while an organic layer is formed using an LITI process, the generation of static electricity may be controlled.
Abstract:
A lamination apparatus and a laser-induced thermal imaging method using the same are provided. The lamination apparatus comprising: a chuck for fixing first and second substrates; and having at least one vacuum hole located therein and exposed outside of the first substrate therein.
Abstract:
A method of fabricating an OLED is provided. The method includes providing a substrate, in which a pixel electrode is formed. In addition, the method includes laminating a donor substrate attached to a frame on an entire surface of the substrate, and irradiating a laser to a predetermined region of the donor substrate to form an organic layer pattern on the pixel electrode. The present invention provides a method of fabricating the OLED capable of suppressing generation of contaminants such as particles and so on, and preventing the donor substrate from sagging or bending, as well as improving transfer efficiency since the donor substrate and the substrate are readily adhered to each other to maintain vacuum state.
Abstract:
An organic EL device which includes a first electrode, a hole transport layer, a light-emitting layer, and the second electrode, wherein the light-emitting layer includes a mixed light-emitting film of a host substance, which is capable of transferring an energy to another light-emitting polymer by absorbing the energy, and a phosphorescent dopant which is capable of emitting light using a triplet state after absorbing the energy received. Accordingly, the light-emitting layer can be patterned, and a color purity and light-emitting characteristics of a full color organic polymer EL device, produced through a laser induced thermal imaging operating, can be improved.
Abstract:
Relating to a method for fabricating an organic electroluminescent display having improved surface flatness and thickness uniformity as well as an improved image quality at edge regions of a pattern, a method for fabricating an organic electroluminescent display includes the steps of: forming a first electrode layer on a transparent substrate, the first electrode layer being a positive electrode; forming an assistant layer on the first electrode layer; forming an organic luminescent layer on the assistant layer by scanning a donor film using a laser beam, the donor film being disposed on the substrate having luminescent materials for R, G, and B; removing the donor film; and forming a second electrode layer on the organic luminescent layer, the second electrode layer being a negative electrode, wherein the step of forming an organic luminescent layer comprises the step of dithering the laser beam in a direction perpendicular to a scanning direction of the laser beam.
Abstract:
The present invention relates to a flat panel display, and more particularly, to a method of fabricating an organic light emitting display device so as to improve device characteristics by patterning a plurality of organic layers using a heat transfer method to optimize thicknesses according to R, G and B pixels. The method includes: forming lower electrodes of R, G and B pixels on an insulating substrate; forming an organic layer on the insulating substrate; and forming an upper electrode on the organic layer. Formation of the organic layer includes forming a hole injection layer and a hole transport layer of the R, G and B pixels on the entire surface of the substrate as a common layer. The R and G emission layers are patterned by a heat transfer method using a heat transfer device having a transfer layer such that an organic layer is patterned to a thickness obtained by subtracting a thickness of the B emission layer from the thicknesses of the R and G emission layers required in R and G colors.