Abstract:
The present invention provides a method and an apparatus for a wireless communication between at least one mobile station and a base station in a cellular system. The method comprises providing a desired spreading in time and frequency domains to transmit data using at least two carriers in a transmission on an uplink to the base station. Either the base station may provide an indication to the mobile station to enable the desired spreading, or alternatively, the mobile station may request it. A spread-spectrum cellular system may enable a mobile station to provide a two-dimensional spreading, which distributes spreading in time and frequency directions. A single two-dimensional spreading code or at least two one-dimensional spreading codes may provide a two-dimensional spreading. In this way, in an uplink transmission using a multi-carrier, code division multiple access (MC-CDMA) protocol, by varying the data portions being spread in time and frequency domains a joint spreading may result. The joint spreading may distribute spreading codes in the time and frequency directions to distribute the spreading in a transmission. When using the MC-CDMA protocol, a mobile station may select one or more spreading formats in an uplink transmission that may increase the success rate of the packet transmission. Moreover, use of a particular spreading format in a flexible manner may reduce the packet delay and suppress intra-cell interference.
Abstract:
A method is provided for controlling communications between a base station and a mobile device. The method comprises transmitting information between the base station and the mobile device over a plurality of sub-channels where each sub-channel has a different carrier frequency. A first portion of the sub-channels are used for legacy mobile devices, and a second portion of the sub-channels is used by new mobile devices.
Abstract:
A method enables the use of a secondary pilot signal and a secondary antenna(s) in the forward link of a CDMA-based cellular network employing a slotted transmission scheme with a time-multiplexed primary pilot signal, with backwards compatibility. The forward link is divided into a number of time slots. For communications with “legacy” mobile stations that expect transmissions from a single, primary antenna (and that expect a single, primary pilot signal), during some of the time slots, only the primary antenna is used for transmissions, including transmitting the primary pilot signal. Neither the secondary pilot channel nor any other signals from the secondary antenna are transmitted. During the remaining time slots: (i) the primary pilot signal is transmitted from the primary antenna, and the secondary pilot signal is transmitted from the secondary antenna, but at different times; and (ii) data meant for the legacy mobile stations is not transmitted.
Abstract:
A method to adjust the burst transmission duration time, in a high speed digital wireless communication system, to provide sufficient time for the transmission of data when all the data is not available at the time of transmission. According to the method of the invention, after the burst transmission is begun, the burst is maintained active as additional data is selected within a known time period following the previous detected data packet and the detected data is appended to the active burst transmission. The invention further terminates the burst duration when no additional data is detected within the redefined time period following the previous detected data packet.
Abstract:
Channel time and frequency correlations are determined from OFDM symbols and subframes using appropriately scaled sums of the products of the received pilot symbols at predetermined intervals n in time and/or frequency of resource elements within the resource blocks of the subframes. The correlation estimates may optionally be improved using pilot symbols for a plurality of antennas and for a plurality of pilot signal ports, and across a plurality of subframes. The calculated channel time and frequency correlations may be employed to improve estimates of channel characteristics for purposes such as selection of a transmission mode between a base station and a user equipment on the channel or for the purpose of channel equalization and data demodulation.
Abstract:
A method and base station apparatus for transmitting pilot data in a wireless communication system, and a method and mobile station apparatus for receiving pilot data in a wireless communication system are provided. The method for transmitting pilot data in a wireless communication system includes determining a pilot pattern in at least one resource block for each of one or more pilot streams, and transmitting the one or more pilot streams based on the determined respective pilot pattern in the at least one resource block, wherein the at least one resource block comprises a plurality of subcarriers and a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
Abstract:
A method is described to reduce the time required to assign the burst transmission parameters in a wireless communication system by autonomously sharing transmission and reception information among the components of the network. Information is autonomously provided from a remote subnetwork element to a controlling network element so the controlling network element may use the information to dynamically assign and update burst transmission parameters.
Abstract:
A base station and subscriber station are capable of communicating with each other in a wireless communication network. The base station allocates resources to the subscriber station through resource allocation messages included in a resource allocation region of a downlink communication. The resource allocation region is partitioned into a plurality of sub-regions. Conventions regarding the arrangement of the resource allocation messages are disclosed which enable the subscriber station to decode the resource allocation messages contained in a sub-region and cease decoding operations upon reaching the end of the sub-region. Accordingly, the subscriber station does not decode resource allocation messages contained in subsequent sub-regions.
Abstract:
For use in a wireless network, a base station configured to communicate in the wireless network is provided. The base station includes a processor coupled to a transmitter and configured to generate a resource allocation message. The resource allocation message includes a plurality of fixed length fields, one or more primary variable-length fields, and a plurality of secondary variable-length fields. The one or more primary variable-length fields occupy a position in the resource allocation message preceding as many of the fixed length fields as permitted by rules that govern a structure of the resource allocation message. The one or more primary variable-length fields are positioned in the resource allocation message such that when the resource allocation message is partitioned and allocated across a sequence of basic units (BUs), every primary variable-length field appears in a smallest possible sequence of BUs starting from the first BU in the sequence.
Abstract:
Channel time and frequency correlations are determined from OFDM symbols and subframes using appropriately scaled sums of the products of the received pilot symbols at predetermined intervals n in time and/or frequency of resource elements within the resource blocks of the subframes. The correlation estimates may optionally be improved using pilot symbols for a plurality of antennas and for a plurality of pilot signal ports, and across a plurality of subframes. The calculated channel time and frequency correlations may be employed to improve estimates of channel characteristics for purposes such as selection of a transmission mode between a base station and a user equipment on the channel or for the purpose of channel equalization and data demodulation.