Abstract:
The present invention provides synthetic processes for preparing racemic and/or optically pure epicatechin, epigallocatechin and related polyphenols as such or as their variously functionalized derivatives. A principle objective of the disclosure is to provide a new and useful method of synthesis to obtain polyphenols in isomerically pure and/or racemic forms.
Abstract:
The present invention relates to the synthesis and application of novel chiral/achiral substituted methyl formyl reagents to modify pharmaceutical agents and/or biologically active substances to modify the physicochemical, biological and/or pharmacokinetic properties of the resulting compounds from the unmodified original agent.
Abstract:
This disclosure relates to new heterocyclic compounds that may be used to modulate a histamine receptor in an individual. Compounds of formula (I) are described, as are pharmaceutical compositions comprising the compounds and methods of using the compounds in a variety of therapeutic applications, including the treatment of a cognitive disorder, psychotic disorder, neurotransmitter-mediated disorder and/or a neuronal disorder.
Abstract:
This disclosure relates to new heterocyclic compounds that may be used to modulate a histamine receptor in an individual. Pyrido[3,4-b]indoles are described, as are pharmaceutical compositions comprising the compounds and methods of using the compounds in a variety of therapeutic applications, including the treatment of a cognitive disorder, psychotic disorder, neurotransmitter-mediated disorder and/or a neuronal disorder.
Abstract:
This disclosure relates to new tetracyclic compounds that may be used to modulate a histamine receptor in an individual. The compounds in one embodiment are tetracyclic [4,3-b]indoles. Pharmaceutical compositions comprising the compounds are also provided, as are methods of using the compounds in a variety of therapeutic applications, including the treatment of a cognitive disorder, psychotic disorder, neurotransmitter-mediated disorder and/or a neuronal disorder.
Abstract:
Quinazoline derivatives and their pharmaceutically acceptable salts are inhibitors of TGFβ activity and are used to treat conditions characterized by enhanced TGFβ activity.
Abstract:
The invention is directed to methods to inhibit p38-α kinase using compounds comprising a phenyl or thienyl coupled through a piperidine or piperazine nucleus to an indole residue wherein the indole residue mandatorily has a substituent on the ring nitrogen which is an amino or substituted amino group.
Abstract:
The invention is directed to compounds and methods to inhibit p38 kinase wherein the compounds are a pyrimidine or pyridine coupled to two mandatory substituents.
Abstract:
The invention is directed to methods to inhibit p38 kinase, preferably p38-α using compounds which are azaindoles wherein the azaindoles are coupled through a piperidine or piperazine type linker to another cyclic moiety.
Abstract:
The invention is directed to methods to inhibit TGF-β and/or p38-α kinase using compounds of the formula or the pharmaceutically acceptable salts thereof wherein R3 is a noninterfering substituent; each Z is CR2 or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N; each R2 is independently a noninterfering substituent; L is a linker; n is 0 or 1; and Ar′ is the residue of a cyclic aliphatic, cyclic heteroaliphatic, aromatic or heteroaromatic moiety optionally substituted with 1-3 noninterfering substituents.