Abstract:
In one example, a system includes a therapy module and a processor. The processor detects a voiding event of a patient and controls the therapy module to deliver electrical stimulation to the patient at a first intensity level for a period of time in response to the detection of the voiding event. Immediately following the period of time, the processor controls the therapy module to increase intensity of the electrical stimulation from the first intensity level to a second intensity level before a subsequent voiding event of the patient by at least controlling the therapy module to deliver stimulation to the patient at a plurality of intermediate intensity levels between the first and second intensity levels prior to delivering stimulation to the patient at the second intensity level following the detection of the voiding event.
Abstract:
In some examples, electrical stimulation is delivered to a patient such that selective termination of the stimulation causes a therapeutic effect in the patient after termination of the electrical stimulation to the patient. The electrical stimulation may be insufficient to produce a desired therapeutic effect in the patient during stimulation, but sufficient to induce a post-stimulation desired therapeutic effect following termination of the stimulation. In some examples, the electrical stimulation may be sub-threshold electrical stimulation. In some examples, the desired therapeutic effect may alleviate bladder dysfunction, bowel dysfunction, or other disorders. The stimulation may be selectively terminated in response to one or more therapy trigger events to induce the post-stimulation therapeutic effect.
Abstract:
A liquid crystal display (LCD) panel includes scanning lines to receive scanning signals, data lines to receive data signals; and pixel pairs. Each pixel pair includes a first pixel and a second pixel. The first pixel includes a first thin film transistor (TFT), and the second pixel includes a second TFT. The first pixel and the second pixel of each pixel pair are arranged on two sides of the data line in each row, and connected to a single data line via the first TFT and the second TFT respectively. One of the two TFTs is a p-type TFT, and the other one is an n-type TFT.
Abstract:
The present invention relates to oxidized fungal antigens and methods of making and using thereof. More particularly, the present invention provides a method for producing an oxidized fungal antigen in culture filtrate. The present invention also provides for the produced oxidized fungal antigens. Devices comprising such oxidized fungal antigens, methods for testing for fungal antibodies using the oxidized fungal antigens and methods for producing anti-fungal antibodies using oxidized fungal antigens are further provided. Antigen detection devices comprising anti-fungal antibodies raised against oxidized fungal antigens produced by the present methods are further provided.
Abstract:
There is disclosed method for reporting channel state so as to report channel state based upon CSI-RS. The method includes: a UE detecting configuration information of Channel State Information-Reference Signal (CSI-RS), determining according to detection result the number of ports required to report channel state based upon CSI-RS, the UE determining CSI-RS based PMI feedback scheme to be adopted in preset corresponding relationship between the number of ports and feedback scheme upon determining that the eNB is to map data of Physical Downlink Shared Channel (PDSCH) onto P (number) CSI-RS ports for transmission in a codebook-based precoding scheme, wherein the codebook-based precoding scheme is a scheme as represented in the formula of [ y ( 0 ) ⋮ y ( P - 1 ) ] = W · s , wherein W represents a codebook consisted of a precoding matrix, S is PDSCH data consisted of data layers whose quantity is equal to value of Rank Indication (RI) and [ y ( 0 ) ⋮ y ( P - 1 ) ] represents a vector consisted of data on P (number) CSI-RS ports; and the UE calculating and reporting channel state information according to the determination result. The invention further discloses apparatus for performing the method.
Abstract:
In one example, a system includes a therapy module and a processor. The processor detects a voiding event of a patient and controls the therapy module to deliver electrical stimulation to the patient at a first intensity level for a period of time in response to the detection of the voiding event. Immediately following the period of time, the processor controls the therapy module to increase intensity of the electrical stimulation from the first intensity level to a second intensity level before a subsequent voiding event of the patient by at least controlling the therapy module to deliver stimulation to the patient at a plurality of intermediate intensity levels between the first and second intensity levels prior to delivering stimulation to the patient at the second intensity level following the detection of the voiding event.
Abstract:
In some examples, a medical device delivers a first electrical stimulation therapy to a patient, and, upon detecting a trigger event, delivers a second electrical stimulation therapy to the patient. In some examples, the first stimulation therapy includes unilateral stimulation or stimulation delivered to both lateral sides of the patient at different times at a stimulation intensity lower than, equal to, or greater than a threshold intensity level for the patient, or bilateral stimulation delivered substantially simultaneously to both lateral sides of the patient, where one lateral side of the patient receives stimulation at an intensity level that is lower than the threshold intensity level and the other lateral side receives stimulation at an intensity level that is greater than or equal to the threshold intensity level. The second stimulation therapy may include substantially simultaneous bilateral stimulation therapy at an intensity level that at or above the threshold intensity level.
Abstract:
The invention relates to the technical field of wireless communications, and in particular to a method, system, and device for measuring interference, so as to solve the problem in the prior art that the precision of interference measured by a terminal is low if a cell adopts a Resource Element Muting (RE MUTING) solution. The method includes: a network side device determining configuration information of a first Resource Element (RE) group performing interference measurement (501); and the network side device generating first interference notification information according to the determined configuration information of the first RE group and sending the first interference notification information to a terminal, so as to instruct the terminal to determine the first RE group according to the first interference notification information and perform the interference measurement on the determined first RE group (502). The terminal is notified to perform the interference measurement on the first RE group, so that when the RE MUTING solution is adopted, the precision of the measured interference is increased.
Abstract:
A method and apparatus for reporting channel state information (CSI) based on a physical uplink shared channel (PUSCH) are used to realize correct reporting of the CSI based on double code books. The method includes the following steps: a reporting mode configuration signaling for the CSI sent from a network side is received, and said reporting mode configuration signaling for the CSI at least carries a designated reporting mode identifier; a first CSI aiming at the whole bandwidth of a system is established according to a reporting type corresponding to said reporting mode identifier; the whole bandwidth of the system is divided into at least two frequency band subclasses, and a second CSI aiming at a designated frequency band subclass is established according to the reporting type corresponding to said reporting mode identifier; and when a reporting indication signaling sent from the network side is received, said first CSI and said second CSI are transmitted to the network side. Therefore, when a user equipment (UE) reports the CSI, a long-term/wideband CSI and a short-term/frequency selective CSI could be considered comprehensively, then a two-level feedback mechanism based on the PUSCH double code books is realized.
Abstract:
The invention provides methods for sensitive and specific detection of anti-HSV-2 antibodies by depletion of cross-reactive (non-specific) antibodies in a biological sample that can lead to a false positive result. The invention also features compositions, including nucleic acids, polypeptides, and kits, for use in the methods of the invention.