Abstract:
While embedded silicon germanium alloy and silicon carbon alloy provide many useful applications, especially for enhancing the mobility of MOSFETs through stress engineering, formation of alloyed silicide on these surfaces degrades device performance. The present invention provides structures and methods for providing unalloyed silicide on such silicon alloy surfaces placed on semiconductor substrates. This enables the formation of low resistance contacts for both mobility enhanced PFETs with embedded SiGe and mobility enhanced NFETs with embedded Si:C on the same semiconductor substrate. Furthermore, this invention provides methods for thick epitaxial silicon alloy, especially thick epitaxial Si:C alloy, above the level of the gate dielectric to increase the stress on the channel on the transistor devices.
Abstract:
Disclosed are embodiments of an n-FET structure with silicon carbon S/D regions completely contained inside amorphization regions and with a carbon-free gate electrode. Containing carbon within the amorphization regions, ensures that all of the carbon is substitutional following re-crystallization to maximize the tensile stress imparted on channel region. The gate stack is capped during carbon implantation so the risk of carbon entering the gate stack and degrading the conductivity of the gate polysilicon and/or damaging the gate oxide is essentially eliminated. Thus, the carbon implant regions can be formed deeper. Deeper S/D carbon implants which are completely amorphized and then re-crystallized provide greater tensile stress on the n-FET channel region to further optimize electron mobility. Additionally, the gate electrode is uncapped during the n-type dopant process, so the n-type dopant dose in the gate electrode can be at least great as the dose in the S/D regions.
Abstract:
Disclosed are embodiments of an n-FET structure with silicon carbon S/D regions completely contained inside amorphization regions and with a carbon-free gate electrode. Containing carbon within the amorphization regions, ensures that all of the carbon is substitutional following re-crystallization to maximize the tensile stress imparted on channel region. The gate stack is capped during carbon implantation so the risk of carbon entering the gate stack and degrading the conductivity of the gate polysilicon and/or damaging the gate oxide is essentially eliminated. Thus, the carbon implant regions can be formed deeper. Deeper S/D carbon implants which are completely amorphized and then re-crystallized provide greater tensile stress on the n-FET channel region to further optimize electron mobility. Additionally, the gate electrode is uncapped during the n-type dopant process, so the n-type dopant dose in the gate electrode can be at least great as the dose in the S/D regions.
Abstract:
A method is provided for fabricating a field effect transistor (“FET”) having a channel region in a semiconductor-on-insulator (“SOI”) layer of an SOI substrate. Desirably, in such method, a sacrificial stressed layer is formed to overlie a first portion of an active semiconductor region but not overlie second portion of the active semiconductor region which shares a common boundary with the first portion. After forming trenches in the SOI layer, the SOI substrate is heated with the stressed layer thereon sufficiently to cause the stressed layer to relax, thereby causing the stressed layer to apply a first stress to the first portion and to apply a second stress to the second portion. For example, when the first stress is tensile, the second stress is compressive, or the first stress can be compressive when the second stress is tensile. Desirably, the stressed layer is then removed to expose the first and second portions of the active semiconductor region. Desirably, the field effect transistor (“FET”) is formed to include (i) a source region in the first portion, (ii) a drain region in the first portion, and (iii) a channel region in the second portion.
Abstract:
A method forms a gate stack over a channel region of a substrate and then forms disposable spacers on sides of the gate stack. Trenches are then recessed in regions of the substrate not protected by the gate stack and the disposable spacers. Carbon-doped Silicon lattice structures are then formed in the trenches. During the forming of the Carbon-doped Silicon lattice structures Carbon atoms can be positioned in any substitutional sites within the lattice structures. The Carbon-doped Silicon lattice structures are then amorphized by implantation of an amorphizing species. An annealing process then recrystallizes the amorphized regions by solid-phase epitaxy regrowth to form the source and drain regions. During the annealing, a majority of Carbon atoms are substitutionally incorporated into a Silicon lattice of the source and drain regions to provide tensile stress to the channel region.
Abstract:
A method of fabricating a gate electrode for a gate of a metal oxide semiconductor field effect transistor (MOSFET), where the transistor has a structure incorporating a gate disposed on a substrate. The substrate comprises a source-drain region. The gate includes a gate electrode disposed on a gate dielectric and surrounded by a spacer. The gate electrode includes a capping layer of polysilicon (poly-Si) and a thin polycrystalline intermixed silicon-germanium (SiGe) layer superposed on the gate dielectric. The thin polycrystalline intermixed silicon-germanium (SiGe) layer may be formed by a high-temperature ultrafast melt-crystalization annealing process. The melt-crystallization process of the intermixed silicon-germanium provides an active dopant concentration that reduces the width of a depletion region formed at an interface of the polycrystalline intermixed silicon-germanium (SiGe) layer and the gate dielectric.
Abstract:
A method of forming a localized region of relaxed Si in a layer of strained Si arranged within a strained silicon directly on insulator (SSDOI) semiconductor substrate is provided by the invention. The strained Si layer is formed on a buried oxide (BOX) layer disposed on a Si substrate base. The method includes depositing a nitride hard mask pattern above a region of the strained Si layer in which enhanced electron mobility is desired, leaving an unmasked region within the strained Si layer, and carrying out various other processing steps to modify and relax the unmasked portion of the strained region. The method includes growing an EPI SiGe region upon the unmasked region using pre-amorphization implantation, and forming a buried amorphous SiGe region in a portion of the EPI SiGe region, and an amorphous Si region, below the amorphous SiGe region. Then, using SPE regrowth, modifying the amorphous SiGe and amorphous Si regions to realize an SPE SiGe region and relaxed SPE Si layer. The SiGe region and the SPE SiGe region are etched, leaving the relaxed SPE Si region above the buried oxide layer. The nitride pattern is stripped.
Abstract:
A hybrid orientation direct-semiconductor-bond (DSB) substrate with shallow trench isolation (STI) that is self-aligned to recrystallization boundaries is formed by patterning a hard mask layer for STI, a first amorphization implantation into openings in the hard mask layer, lithographic patterning of portions of a top semiconductor layer, a second amorphization implantation into exposed portions of the DSB substrate, recrystallization of the portions of the top semiconductor layer, and formation of STI utilizing the pattern in the hard mask layer. The edges of patterned photoresist for the second amorphization implantation are located within the openings in the patterned hard mask layer. Defective boundary regions formed underneath the openings in the hard mask layer are removed during the formation of STI to provide a leakage path free substrate. Due to elimination of a requirement for increased STI width, device density is increased compared to non-self-aligning process integration schemes.
Abstract:
A semiconductor structure and related method for fabrication thereof includes a liner layer interposed between: (1) a pedestal shaped channel region within a semiconductor substrate; and (2) a source region and a drain region within a semiconductor material layer located upon the liner layer and further laterally separated from the pedestal shaped channel region within the semiconductor substrate. The liner layer comprises an active doped silicon carbon material. The semiconductor material layer may comprises a semiconductor material other than a silicon carbon semiconductor material. The semiconductor material layer may alternatively comprise a silicon carbon semiconductor material having an opposite dopant polarity and lower carbon content in comparison with the liner layer. Due to presence of the silicon carbon material, the liner layer inhibits dopant diffusion therefrom into the pedestal shaped channel region. Electrical performance of a field effect device that uses the pedestal shaped channel region is thus enhanced.
Abstract:
An embedded silicon carbon (Si:C) having a substitutional carbon content in excess of one percent in order to effectively increase electron mobility by application of tension to a channel region of an NFET is achieved by overfilling a gap or trench formed by transistor gate structures with Si:C and polishing an etching the Si:C to or below a surface of a raised gate structure in a super-Damascene process, leaving Si:C only in selected regions above the transistor source and drain, even though processes capable of depositing Si:C with sufficiently high substitutional carbon content are inherently non-selective.