Abstract:
The present invention intends to provide a manufacturing method of a semi-transmissive liquid crystal display device in which method a structure and manufacturing process thereof are simplified to enable to reduce the manufacturing cost. In order to achieve the above object, a semi-transmissive liquid crystal display device in the invention has a layer constitution in which a reflective pixel electrode is formed with a second conductive film that constitutes a source electrode, a drain electrode, a source wiring and so on and on an upper layer of the second metal film a transmissive pixel electrode made of a transparent conductive film is formed through the insulating film. A TFT array substrate can be formed through 5 times of photoengraving process.
Abstract:
An IPS liquid crystal displaying apparatus includes: a TFT array substrate, an opposite substrate opposed to the TFT array substrate and liquid crystal interposed between the TFT array substrate and the opposite substrate, wherein the TFT array substrate is composed of a glass substrate, a gate insulating film formed on the glass substrate, a possivation film formed on the gate insulating film, a plurality of scanning lines for transmitting a scanning signal, a plurality of signal lines for transmitting an image signal, a plurality of pixels arranged in grid like pattern by crossing the plurality of scanning lines with the plurality of signal lines, a plurality of TFTs implementing switching operation of the image signal on the basis of the scanning signals, a plurality of driving electrodes connected with the TFT, a plurality of opposite electrodes arranged in such a manner that each of the plurality of opposite electrodes is opposed to each of the driving electrodes, and a plurality of common lines for mutually connecting each of the opposite electrode of one of the plurality of pixels with the other one of the plurality of pixels, wherein the TFT array substrate is formed on the passivation film, the passivation film being different from a layer provided with the driving electrode and the opposite electrode.
Abstract:
An IPS liquid crystal displaying apparatus includes: a TFT array substrate, an opposite substrate opposed to the TFT array substrate and liquid crystal interposed between the TFT array substrate and the opposite substrate, wherein the TFT array substrate is composed of a glass substrate, a gate insulating film formed on the glass substrate, a possivation film formed on the gate insulating film, a plurality of scanning lines for transmitting a scanning signal, a plurality of signal lines for transmitting an image signal, a plurality of pixels arranged in grid like pattern by crossing the plurality of scanning lines with the plurality of signal lines, a plurality of TFTs implementing switching operation of the image signal on the basis of the scanning signals, a plurality of driving electrodes connected with the TFT, a plurality of opposite electrodes arranged in such a manner that each of the plurality of opposite electrodes is opposed to each of the driving electrodes, and a plurality of common lines for mutually connecting each of the opposite electrode of one of the plurality of pixels with the other one of the plurality of pixels, wherein the TFT array substrate is formed on the passivation film, the passivation film being different from a layer provided with the driving electrode and the opposite electrode.
Abstract:
An active-matrix liquid crystal display integrally formed with a driver circuit including: a pair of substrates disposed in opposing relation to each other; and a liquid crystal material sandwiched between the pair of substrates,wherein the pair of substrates includes:a TFT substrate including at least an insulative substrate, source interconnection line and gate interconnection line which are formed in a matrix pattern on the insulative substrate, a thin film transistor provided to each pixel portion for use as a switching element for applying a voltage to a portion of the liquid crystal material which lies at a location where the source interconnection line and the gate interconnection line intersect each other, a pixel electrode connected to a drain electrode of the thin film transistor for supplying a voltage to the liquid crystal material, and a CMOS driver circuit having a CMOS which comprises thin film transistors for supplying an electric signal to the thin film transistor of the pixel portion through the source interconnection line and the gate interconnection line; anda counterpart substrate including an insulative substrate and a counter electrode formed thereon,the thin film transistor provided to the pixel portion being of a first conductivity type and of an offset or LDD structure,at least a first conductivity type thin film transistor of the thin film transistors of the CMOS driver circuit being of an offset or LDD structure.
Abstract:
A thin-film transistor array substrate includes a source line that is formed above a gate insulating layer covering a gate line, a semiconductor layer that is formed on the gate insulating layer and placed in a substantially whole area below a drain electrode, in a substantially whole area below a source electrode, in a substantially whole area below the source line and in a position opposite to the gate electrode, a pixel electrode that is formed directly on the drain electrode, a transparent conductive pattern that is formed directly on the source electrode and the source line in the same layer as the pixel electrode, and a counter electrode that is formed on an interlayer insulating layer covering the pixel electrode and the transparent conductive pattern and generates a fringe electric field with the pixel electrode.
Abstract:
In forming a thin film transistor using multi-tone exposure, a wiring width of a foundational wiring is 40 μm or less, and a ratio of a wiring width of a foundational wiring in a dense case to a space between adjacent wirings is 1.7, preferably 1.0 or less.
Abstract:
A thin-film transistor array substrate includes a source line that is formed above a gate insulating layer covering a gate line, a semiconductor layer that is formed on the gate insulating layer and placed in a substantially whole area below a drain electrode, in a substantially whole area below a source electrode, in a substantially whole area below the source line and in a position opposite to the gate electrode, a pixel electrode that is formed directly on the drain electrode, a transparent conductive pattern that is formed directly on the source electrode and the source line in the same layer as the pixel electrode, and a counter electrode that is formed on an interlayer insulating layer covering the pixel electrode and the transparent conductive pattern and generates a fringe electric field with the pixel electrode.
Abstract:
In forming a thin film transistor using multi-tone exposure, a wiring width of a foundational wiring is 40 μm or less, and a ratio of a wiring width of a foundational wiring in a dense case to a space between adjacent wirings is 1.7, preferably 1.0 or less.
Abstract:
An array substrate has regions in which an intermediate resist film thickness is formed and processed by an intermediate exposure amount which does not completely expose a resist, respectively on a drain electrode, source terminal, and a common connection wiring which are made of a second conductive film. Thin film patterns or a common wiring made of a first conductive film is formed in substantially entire regions on the bottom layers of the regions so that the heights from a substrate are substantially the same.
Abstract:
An In Plane Switching (IPS) liquid crystal displaying apparatus includes a TFT array substrate, an opposite substrate opposed to the TFT array substrate and a liquid crystal interposed between the TFT array substrate and the opposite substrate. The TFT array substrate includes a plurality of driving electrodes formed on a passivation film and connected with the plurality of TFTs, a plurality of opposite electrodes formed on the passivation film, each of the plurality of opposite electrodes opposing the respective plurality of driving electrodes, and a plurality of common lines configured to connect each of the plurality of opposite electrodes with each of a plurality of pixels. The TFT array substrate provided with a light shielding formed in such a manner as to superpose one signal line of the plurality of signal lines and one opposite electrode of the plurality of opposite electrodes.