Abstract:
A rule server detects a condition pertaining to a switch of a user device to a preferred wireless carrier, and sends a message to the user device indicating a switch to the preferred wireless carrier.
Abstract:
Described herein are systems and methods for automatically discovering services available between two or more media devices. These services may be configured to provide content for presentation, present content, and so forth. Once discovered, connections may be established between the media devices. These connections may be used to control or deliver content using the services. The discovery, establishment of the connections, or both may occur automatically without user intervention.
Abstract:
A method for customizing a device during order fulfillment is described. A processing device receives an order for an electronic device, the order comprising customization information that is stored in a memory. The processing device wirelessly transmits the customization information into an electronic tag embedded in the electronic device while the electronic device is enclosed in associated packaging.
Abstract:
This disclosure describes a system for managing inventory as it transitions into a materials handling facility, as it transitions between locations within a materials handling facility and/or as it transitions out of a materials handling facility. In some instances, a user (e.g., picker or picking agent) may retrieve an item from an inventory location and place the item into a tote. The systems described herein detect the item when it is added to or removed from the tote.
Abstract:
A method for customizing a device during order fulfillment is described. A radio frequency identification (RFID) tag of an electronic device is wirelessly loaded with customization information at an order fulfillment center without disturbing packaging surrounding the electronic device or without powering up the electronic device.
Abstract:
Wireless mesh network (WMN) architectures of network hardware devices organized in a mesh topology is described. One device communicates, using a first radio, first data with a second device via a first wireless link between the device and the second device. The device communicates, using a second radio, second data with a third device via a second wireless link between the device and the third device. The device communicates, using a third radio, third data with a fourth device via a third wireless link between the device and the fourth device. The device communicates, using a fourth radio, fourth data with a server of a content delivery network (CDN) via a point-to-point wireless link between the device and the server. The device is an only ingress point for content files for a mesh network that includes at least the device, the second device, and the third device.
Abstract:
This disclosure describes a system for managing inventory as it transitions into a materials handling facility, as it transitions between locations within a materials handling facility and/or as it transitions out of a materials handling facility. In some instances, a user (e.g., picker or picking agent) may retrieve an item from an inventory location and place the item into a tote. The systems described herein detect the item when it is added to or removed from the tote.
Abstract:
Described are techniques for determining occurrence of an error within a system of related devices. If the device affected by the error is not known, other devices within the system may be used to determine whether a device is unresponsive, non-functional, or limited in functionality. The other devices may also be used to determine data indicative of characteristics of the error, such as statuses and activities of devices at or near the time of the error, which may be used to generate a query. The query may be used to determine possible control actions that may address the error or prevent subsequent errors.
Abstract:
Network hardware devices organized in a wireless mesh network (WMN) in which one network hardware devices includes multiple radios. A processing device of a first network hardware device receives, via a first radio, a beacon frame from a second mesh network device, scans, via a second radio, for a second mesh frame of the second mesh network device, and receives the mesh frame. The processing device determines a first sector identifier that identifies an antenna from which the mesh frame is transmitted, a first signal strength indicator value corresponding to the mesh frame, an unused radio and an unused channel of the second mesh network device. The processing device sends a first message to the unused radio of the second mesh network device on the unused channel via the second radio, receives a second message, and configures the multiple radios to communicate with the second mesh network device.
Abstract:
Network hardware devices organized in a wireless mesh network (WMN) in which one network hardware devices includes multiple radios. A processing device of a first network hardware device receives, via a first radio, a beacon frame from a second mesh network device, scans, via a second radio, for a second mesh frame of the second mesh network device, and receives the mesh frame. The processing device determines a first sector identifier that identifies an antenna from which the mesh frame is transmitted, a first signal strength indicator value corresponding to the mesh frame, an unused radio and an unused channel of the second mesh network device. The processing device sends a first message to the unused radio of the second mesh network device on the unused channel via the second radio, receives a second message, and configures the multiple radios to communicate with the second mesh network device.