Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
Abstract:
Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.
Abstract:
An electronic device may have peripheral conductive housing structures, a display frame, a support plate, a logic board, and an antenna. The antenna may have a resonating element that includes a first slot between the logic board and a segment of the peripheral conductive housing structures, a second slot between the display frame and the segment, and optionally a third slot between the support plate and the segment. The slots may be at least partially overlapping, may have respective lengths, may be located at respective distances from a cover layer for the display, and may collectively receive radio-frequency signals in a frequency band such as the L5 GPS band. Switching circuitry and filter circuitry may be coupled to the antenna feed and/or to the antenna feed (s) of one or more adjacent antennas in the electronic device to help to isolate the antennas from each other.
Abstract:
An electronic device may include first and second antennas formed from respective first and second segments of a housing. The first antenna may have a first feed coupled to the first segment by a first switch and coupled to the first segment by a first conductive trace. The second antenna may have a second feed coupled to the second segment by a second switch and coupled to the second segment by a second conductive trace. The first segment may be separated from the second segment by a single gap, a data connector may pass through the second segment, and the antennas may selectively cover a low band. Alternatively, the first segment may be separated from the second segment by a third segment and two gaps, the data connector may pass through the third segment, and the first and second antennas may concurrently cover the low band.
Abstract:
An electronic device may include wireless circuitry with a baseband processor, a transceiver, and an antenna. The antenna may be coupled to one or more antenna tuning elements for tuning the antenna over multiple communications (frequency) bands of interest. The baseband processor may be configured to simultaneously broadcast, over a digital interface, an aggregate message that includes control bits for adjusting multiple antenna tuning elements coupled to the digital interface. Adjusting multiple antenna tuning elements by issuing a single broadcast command can help optimize interface efficiency while maintaining compatibility with existing industry standards.
Abstract:
An electronic device may have peripheral conductive housing structures, a display frame, a support plate, a logic board, and an antenna. The antenna may have a resonating element that includes a first slot between the logic board and a segment of the peripheral conductive housing structures, a second slot between the display frame and the segment, and optionally a third slot between the between the support plate and the segment. The slots may be at least partially overlapping, may have respective lengths, may be located at respective distances from a cover layer for the display, and may collectively receive radio-frequency signals in a frequency band such as the L5 GPS band. Switching circuitry and filter circuitry may be coupled to the antenna feed and/or to the antenna feed(s) of one or more adjacent antennas in the electronic device to help to isolate the antennas from each other.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
Abstract:
An electronic device may be provided with antenna structures and control circuitry. The antenna structures may include an antenna resonating element arm, an antenna ground, and an antenna feed coupled between the antenna resonating element arm and the antenna ground. The electronic device may include a tunable component configured to tune a frequency response of the antenna structures. The electronic device may also include a substrate, a radio-frequency transceiver on the substrate, control circuitry configured to generate control signals, a flexible printed circuit, and a connector. The connector may mechanically secure the flexible printed circuit to the substrate and may be electrically coupled to the transceiver and the control circuitry. The flexible printed circuit may include a radio-frequency transmission line coupled between the antenna feed and the connector and a control signal path coupled between the tunable component and the connector.
Abstract:
An electronic device may include antennas, a ground, and a housing. First and second gaps in the housing may define a segment that forms a resonating element for a first antenna. First, second, third, and fourth antenna feeds may be coupled between the segment and ground. Control circuitry may control adjustable components to place the device in first, second, third, or fourth modes. In the first and second modes, the first and fourth feeds convey signals at the same frequency using a multiple-input and multiple-output scheme while the second and third feeds are inactive. In the third mode, the second feed is active and the first, third, and fourth feeds are inactive. In the fourth mode, the third feed is active and the first, second, and fourth antenna feeds are inactive. Isolating return paths may be coupled between the segment and ground in the first and second modes.
Abstract:
An electronic device may be provided with control signal generation circuitry that generates a differential pair of control signals, power supply circuitry that generates a bias voltage, and an antenna having a tuning circuit. First switching circuitry may be coupled to the power supply circuitry and the control signal generation circuitry. Second switching circuitry may be coupled to the tuning circuit. A pair of control lines may be coupled between the first and second switching circuitry. In a first switching mode, the power supply circuitry may transmit the bias voltage to the tuning circuit over one of the control lines. The bias voltage may charge storage circuitry coupled to the tuning circuit. In a second switching mode, the control signal generation circuitry may transmit the differential pair of control signals to the tuning circuit. The tuning circuit may be powered by the storage circuitry in the second switching mode.