Abstract:
Some embodiments relate to a cellular network which better utilizes packet-switched (PS) voice technologies, such as VoLTE, for roaming user equipment (UE) devices. When a roaming UE associated with a home cellular carrier that does not support PS to CS handover (SRVCC) desires to make a VoLTE call, the cellular network may determine probability of such a handover during the the call. The cellular network may selectively accept or reject the packet-switched wireless voice call based on the handover probability. If the probability of handover is high, the cellular network may reject the packet-switched wireless voice and trigger the UE to fall back to a circuit-switched network and re-originate the wireless voice call on the circuit-switched network. In the case of a mobile terminated call, the cellular network may provide signaling to the UE to perform a fallback to a circuit-switched network in order to receive the mobile terminated call.
Abstract:
A method includes a wireless mobile device communicating with a wireless network via an evolved high rate packet data (eHRPD) interface. The wireless mobile device may receive a vendor specific network control protocol (VSNCP) packet such as a terminate-request packet, for example, that indicates the wireless network has requested a PDN disconnection. The VSNCP packet includes a cause code that indicates a reason for the PDN disconnection request. The wireless device may use the cause code to determine the reason for the PDN disconnection request. Accordingly, in response to receiving the VSNCP packet, the wireless mobile device may perform one or more operations in an effort to resolve any issues that may have caused the PDN disconnection request.
Abstract:
A user identity module (UIM) is incorporated in user equipment such as a mobile phone or mobile device. The UIM is configured to provision itself while roaming away from a home network as follows. The UIM may: send to the UE a request for information identifying a current radio access technology (RAT) that the UE is camped on; receive the current RAT information from the UE; send to the UE a request for network location information, where the network location information identifies a network in which the UE is currently camped; receive the network location information from the UE; generate an access point name (APN) using the current RAT information and the network location information; and open a channel through the network to a remote agent (e.g., a provisioning server) using the access point name.
Abstract:
A method includes a wireless mobile device communicating with a wireless network via an evolved high rate packet data (eHRPD) interface. The wireless mobile device may receive a vendor specific network control protocol (VSNCP) packet such as a terminate-request packet, for example, that indicates the wireless network has requested a PDN disconnection. The VSNCP packet includes a cause code that indicates a reason for the PDN disconnection request. The wireless device may use the cause code to determine the reason for the PDN disconnection request. Accordingly, in response to receiving the VSNCP packet, the wireless mobile device may perform one or more operations in an effort to resolve any issues that may have caused the PDN disconnection request.
Abstract:
A user identity module (UIM) is incorporated in user equipment such as a mobile phone or mobile device. The UIM is configured to provision itself while roaming away from a home network as follows. The UIM may: send to the UE a request for information identifying a current radio access technology (RAT) that the UE is camped on; receive the current RAT information from the UE; send to the UE a request for network location information, where the network location information identifies a network in which the UE is currently camped; receive the network location information from the UE; generate an access point name (APN) using the current RAT information and the network location information; and open a channel through the network to a remote agent (e.g., a provisioning server) using the access point name.
Abstract:
A method includes a wireless mobile device communicating with a wireless network via an evolved high rate packet data (eHRPD) interface. The wireless mobile device may receive a vendor specific network control protocol (VSNCP) packet such as a terminate-request packet, for example, that indicates the wireless network has requested a PDN disconnection. The VSNCP packet includes a cause code that indicates a reason for the PDN disconnection request. The wireless device may use the cause code to determine the reason for the PDN disconnection request. Accordingly, in response to receiving the VSNCP packet, the wireless mobile device may perform one or more operations in an effort to resolve any issues that may have caused the PDN disconnection request.
Abstract:
Methods and apparatus for suspending session state during hybrid network operation. In one exemplary embodiment, a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. During these tuned-away periods, the client device may suspend operation on the tuned away network for extended tune away intervals.
Abstract:
A method is performed by a set of one or more servers and includes receiving, from a first user equipment (UE) to be activated with a cellular carrier for a user, and at the set of one or more servers, information identifying a second UE of the user and authentication information for authenticating the user with the cellular carrier. The method further includes authenticating the user using the authentication information; transmitting a password to the second UE at least partly in response to authenticating the user; receiving, from the first UE and at the set of one or more servers, the password; validating the password received from the first UE; and initiating a transfer of an embedded subscriber identity module (eSIM) subscription, from the second UE to the first UE, at least partly in response to validating the password.
Abstract:
Apparatuses, systems, and methods for high data mode operation in cellular networks. A UE may determine, for an interface to a high-speed cellular network, a categorization from a plurality of categorizations, determine availability of the high-speed cellular network, and select, based at least in part on the categorization and availability of the high-speed cellular network, the interface for a data connection to the high-speed cellular network. The categorization may be one of expensive or not expensive and/or one of a first level associated with a higher compression codec rate or a second level associated with a lower compression codec rate. The UE may receive, from one of the a low-speed cellular network or the high-speed cellular network, carrier plan information for a cellular data service carrier and analyze the carrier plan information to determine desirability of a switch, e.g., from the low-speed cellular network to the high-speed cellular network.
Abstract:
Techniques are disclosed relating to a mobile device that communicates over short-range networks and long-range networks. In various embodiments, a mobile device includes one or more radios configured to communicate using a plurality of radio access technologies (RATs) including a cellular RAT and a short-range RAT. The mobile device may establish a first connection and a second connection with a network such that the first connection uses the short-range RAT and the second connection uses the cellular RAT. The mobile may collect information about the second connection and communicate the collected information to the network over the first connection. In some embodiments, the information includes a base station identifier, an MCC, an MNC, the cellular RAT and a cellular information age indicating the time since the information about the second connection was collected by the UE.