Abstract:
The invention provides a fuel cell device having first and second cold end regions with a reaction zone therebetween. Fuel and oxidizer inlets are positioned in the first and second cold end regions with respective fuel and oxidizer outlets positioned in either the reaction zone or the opposite cold end region, and respective elongate fuel and oxidizer passages are coupled between the respective inlets and outlets at least partially extending through the reaction zone within an interior solid ceramic support structure in parallel and opposing relation. Electrodes are positioned adjacent the fuel and oxidizer passages in the reaction zone within the interior solid ceramic support structure and are electrically coupled to exterior contact surfaces in at least one of the cold end regions to which electrical connections are made. An electrolyte between the electrodes is monolithic with the interior solid ceramic support structure.
Abstract:
The present invention relates to fuel cell devices and fuel cell systems, methods of using fuel cell devices and systems, and methods of making fuel cell devices. According to certain embodiments, the fuel cell devices may include an elongate substrate, such as a rectangular or tubular substrate, the length of which is the greatest dimension such that the coefficient of thermal expansion has only one dominant axis that is coextensive with the length. In addition, or in accordance with other certain embodiments, a reaction zone is positioned along a first portion of the length for heating to an operating reaction temperature, and at least one cold zone is positioned along a second portion of the length for operating at a temperature below the operating reaction temperature. There are one or more fuel passages in the elongate substrate, each having an associate anode, and one or more oxidizer passages in the elongate substrate, each having an associate cathode. In some embodiments, the passages are formed by sacrificial organic materials that are melted or baked out of the structure and/or by removable structures that are pulled out after lamination. Bake-out paths may also be used to facilitate removal of the sacrificial organic materials, which paths are later sealed. Embodiments of the invention further include methods and devices in which a current collector is recessed into the electrode.
Abstract:
Fuel cell devices and fuel cell systems, methods of using same, and methods of making same are provided. In certain embodiments, the fuel cell devices may include one or more active layers containing active cells that are connected electrically in parallel and/or series. In certain embodiments, the fuel cell devices include an elongate ceramic support structure the length of which is the greatest dimension such that the coefficient of thermal expansion has only one dominant axis coextensive with the length. In certain embodiments, a reaction zone is positioned along a first portion of the length for heating to a reaction temperature, and at least one cold zone is positioned along a second portion of the length for operating below the reaction temperature. There are one or more gas passages, each having an associated anode or cathode. In some embodiments, ceramic end tubes are permanently attached to the ceramic support structure to supply gases to the passages. In certain embodiments, a multilayer active structure is attached upon a flat tube having a plurality of channels therein for feeding gases into the passages of the multilayer active structure. In other embodiments, multilayer active structures are provided in which the electrodes contain pluralities of microtubular or nanotubular passages for feeding gases thereto. In yet other embodiments, the multilayer active structure is contained within a ceramic support structure that includes two elongate members that extend outwardly from one edge for feeding gases into the multilayer active structure.
Abstract:
The invention provides a solid oxide fuel cell device and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate substrate having a first cold end region adjacent a first end, a second cold end region adjacent a second end, and a hot reaction zone between the first and second cold end regions, wherein the hot reaction zone is configured to be heated to an operating reaction temperature, and the first and second cold end regions are configured to remain at a low temperature below the operating reaction temperature. A fuel inlet is positioned in the first cold end region with a respective fuel outlet positioned in either the hot reaction zone or the second cold end region, and an elongate fuel passage is coupled therebetween at least partially extending through the hot reaction zone. Similarly, an oxidizer inlet is positioned in the second cold end region with a respective oxidizer outlet positioned in either the hot reaction zone or the first cold end region, and an elongate oxidizer passage is coupled therebetween at least partially extending through the hot reaction zone in parallel and opposing relation to the elongate fuel passage. An anode is positioned adjacent the fuel passage in the hot reaction zone and is electrically coupled to a first exterior contact surface on the elongate substrate in at least one of the first and second cold end regions. A cathode is positioned adjacent the oxidizer passage in the hot reaction zone and is electrically coupled to a second exterior contact surface on the elongate substrate in at least one of the first and second cold end regions. Electrical connections are made to the exterior contact surfaces.
Abstract:
A method of making a monolithic or essentially monolithic single layer capacitor with high structural strength and capacitance. Sheets of green-state ceramic dielectric material and ceramic/metal composite material are laminated together, diced into individual chips, and fired to sinter the ceramic together. The composite material may contain an amount of metal sufficient to render the composite conductive whereby the composite may be used for one or both electrodes and for mounting the capacitor to the pc board. Alternatively, the composite material may contain an amount of metal insufficient to render the composite conductive but sufficient to act as seed points for an electroplating process wherein the composite is preferentially coated with conductive metal, and the coated composite is mounted to the pc board and the coating provides an electrical connection to an internal electrode. Vertically-oriented surface mountable capacitors and hybrid capacitors are provided.
Abstract:
A capacitor including at least one interior metallization plane or plate and a multiplicity of vias for forming multiple redundant electrical connections within the capacitor. Series capacitors are provided having at least two interior plates redundantly electrically connected to at least two respective exterior plates. R-C devices are provided having multiple redundant vias filled with resistor material and/or conductor material to provide a resistor either in series with or parallel to a capacitor. Capacitors and R-C devices are provided having end terminations for applying voltage differential. Further, a method for making single capacitors, multiple parallel array capacitors, series capacitors and R-C devices is provided in which the chips are formed from the bottom up.
Abstract:
A monolithic or essentially monolithic single layer capacitor with high structural strength and capacitance. Sheets of green-state ceramic dielectric material and ceramic/metal composite material are laminated together, diced into individual chips, and fired to sinter the ceramic together. The composite material may contain an amount of metal sufficient to render the composite conductive whereby the composite may be used for one or both electrodes and for mounting the capacitor. Alternatively, the composite material may contain an amount of metal insufficient to render the composite conductive but sufficient to act as seed points for an electroplating process wherein the composite is preferentially coated with conductive metal, the coated composite is mounted, and the coating provides an electrical connection to an internal electrode. Vertically-oriented surface mountable capacitors and hybrid capacitors are provided.
Abstract:
A fuel cell device is provided having an active structure with an anode and cathode in opposing relation with an electrolyte therebetween, a fuel passage adjacent the anode for supplying fuel to the active structure, and an air passage adjacent the cathode for supplying air to the active structure. A porous ceramic layer is positioned between each of the anode and fuel passage and the cathode and air passage, the porous ceramic layers having a porosity configured to permit transport of fuel and air from the respective fuel and air passage to the respective anode and cathode. An inactive surrounding support structure is provided that is monolithic with the electrolyte and the porous ceramic layers, wherein the inactive surrounding support structure lacks the anode and cathode in opposing relation and the active structure resides within the inactive surrounding support structure.
Abstract:
A fuel cell device with a rectangular solid ceramic substrate extending in length between first and second end surfaces where thermal expansion occurs primarily along the length. An active structure internal to the exterior surface extends along only a first portion of the length and has an anode, cathode and electrolyte therebetween. The first portion is heated to generate a fuel cell reaction. A remaining portion of the length is a non-heated, non-active section lacking opposing anode and cathode where heat dissipates along the remaining portion away from the first portion. A second portion of the length in the remaining portion is distanced away from the first portion such that its exterior surface is at low temperature when the first portion is heated. The anode and cathode have electrical pathways extending from the internal active structure to the exterior surface in the second portion for electrical connection at low temperature.
Abstract:
The invention provides solid oxide fuel cell devices and systems, each including an elongate substrate having an active end region for heating to an operating reaction temperature, and a non-active end region that remains at a low temperature below the operating reaction temperature when the active end region is heated. An electrolyte is disposed between anodes and cathodes in the active end region, and the anodes and cathodes each have an electrical pathway extending to an exterior surface in the non-active end region for electrical connection at low temperature. The system further includes the devices positioned with their active end regions in a hot zone chamber and their non-active end regions extending outside the chamber. A heat source is coupled to the chamber to heat the active end regions to the operating reaction temperature, and fuel and air supplies are coupled to the substrates in the non-active end regions.