摘要:
Embodiments of the invention provide improved thermal conductivity within, among other things, electromagnetic coils, coil assemblies, electric motors, and lithography devices. In one embodiment, a thermally conductive coil includes at least two adjacent coil layers. The coil layers include windings of wires formed from a conductor and an insulator that electrically insulates the windings within each coil layer. In some cases the insulator of the wires is at least partially absent along an outer surface of one or both coil layers to increase the thermal conductivity between the coil layers. In some embodiments, an insulation layer is provided between the coil layers to electrically insulate the coil layers. In some cases the insulation layer has a thermal conductivity greater than the thermal conductivity of the wire insulator.
摘要:
A device container assembly (30) for storing a reticle (26) includes a device container (246) and a shield assembly (250). The device container (246) encircles the reticle (26). Further, the device container (246) includes a fluid port (254) that allows for the flow of fluid (276) into and out of the device container (246). The shield assembly (250) is encircled by the device container (246). Further, the shield assembly (250) is positioned between the fluid port (254) and the reticle (26) when the reticle (26) is positioned within the device container (246). The shield assembly (250) can inhibit contaminants (278) near the fluid port (254) from being deposited on the reticle (26) and can maintain the integrity of the reticle (26).
摘要:
Devices and methods are disclosed for holding an object, particularly a planar object. An exemplary device has a chuck and pressure-changing device. The chuck has an object-mounting surface and a deformable membrane coupled to the object-mounting surface such that conformational changes in the membrane produce corresponding changes in the object-mounting surface. The chuck has a first cavity separated by the membrane from the chuck cavity. The pressure-changing device is coupled to the first cavity to change pressure in the first cavity, relative to outside it, sufficiently to produce a conformational change of the membrane and a corresponding change in the object-mounting surface sufficient to reduce the force with which the object is being held to the object-mounting surface. The pressure change can be a pressure increase or decrease. The change in the object-mounting surface can be, for example, a reduction in area of contact of the object-mounting surface with the object, thereby reducing the holding force.
摘要:
A device container assembly (30) for storing a reticle (26) includes a device container (246) and a shield assembly (250). The device container (246) encircles the reticle (26). Further, the device container (246) includes a fluid port (254) that allows for the flow of fluid (276) into and out of the device container (246). The shield assembly (250) is encircled by the device container (246). Further, the shield assembly (250) is positioned between the fluid port (254) and the reticle (26) when the reticle (26) is positioned within the device container (246). The shield assembly (250) can inhibit contaminants (278) near the fluid port (254) from being deposited on the reticle (26) and can maintain the integrity of the reticle (26).
摘要:
Methods and apparatus for aligning a mirror block with a base plate to form a mirror assembly are disclosed. According to one aspect of the present invention, a method for forming a mirror assembly includes positioning a mirror block in contact with a base plate that has at least one alignment feature, and indexing a portion of an alignment tool with respect to the base plate. The method also includes applying at least a first force by moving the mirror block with respect to alignment feature. A determination is made as to when a first surface of the mirror block is substantially coplanar with a first surface of the alignment feature. The mirror block is coupled to the base plate when the first surface of the mirror block is substantially coplanar with the first surface of the alignment feature.
摘要:
Optical components and systems are disclosed that include an optical element and a base member. Multiple wells correspond to respective locations on a surface of the optical element. Liquid metal in the wells is coupled to the respective locations to apply respective hydrostatic pressures to the locations. At least one displacement device is coupled to at least one well to selectively change the respective hydrostatic pressure applied, relative to the base member, by the liquid metal in the well to the respective location. The “liquid metal” is any of several formulations of metal that are liquid under actual-use conditions (e.g., a liquid alloy of gallium). The liquid metal can be displaced through conduits to change the hydrostatic pressure being applied to the respective locations. The displacement, and hence the hydrostatic pressure, can be feedback controlled.
摘要:
Methods and apparatus for cooling mirrors in an extreme ultraviolet (EUV) lithography system using a liquid metal interface are described. According to one aspect of the present invention, an apparatus which may be used in an EUV lithography system includes a heat exchanger, a mirror assembly, and a first liquid metal interface. The heat exchanger including at least a first surface. The mirror assembly includes a first mirror block having a first mirrored surface, as well as at least a first well. Finally, the first liquid metal interface includes liquid metal which is contained in the first well. The first surface is in contact with the liquid metal such that heat may be transferred form the first mirror block to the heat exchanger.
摘要:
Optical components and systems are disclosed that include an optical element and a base member. Multiple wells correspond to respective locations on a surface of the optical element. Liquid metal in the wells is coupled to the respective locations to apply respective hydrostatic pressures to the locations. At least one displacement device is coupled to at least one well to selectively change the respective hydrostatic pressure applied, relative to the base member, by the liquid metal in the well to the respective location. The “liquid metal” is any of several formulations of metal that are liquid under actual-use conditions (e.g., a liquid alloy of gallium). The liquid metal can be displaced through conduits to change the hydrostatic pressure being applied to the respective locations. The displacement, and hence the hydrostatic pressure, can be feedback controlled.
摘要:
Techniques for minimizing contamination by particles that wear off of components that come into and out of contact with each other. The invention involves forming at least one of the components out of a magnetic material so that the particles that wear off of the component are magnetic themselves. Then a magnetic field is used to attract the particles. In one embodiment, the particles are attracted to and collected by a magnet. In this way, the particles are drawn away from any components that might be contaminated. In some embodiments, the magnetic component is also magnetized. In other embodiments, a magnet is placed in contact with the magnetic component. In other embodiments, each of the components that come into contact with each other are formed of a magnetic material.
摘要:
A fly's eye mirror including first and second complementary M×N arrays, each including a plurality of faceted reflective surfaces arranged along both the first and the second axes. When assembled, the two complementary arrays are integrated together and mounted onto a common base plate. With the increased lineal length of each array along both axes, the faceted reflective surfaces of each array are in rotational or tilt alignment with a base plate along both axes.