Abstract:
Power converters can include a plurality of switching devices and a combination of one or more inductors and one or more flying capacitors. Both boost and buck converters may employ such topologies, and can achieve high efficiency and small size in at least some applications, including those with high conversion ratios. A control circuit can generate a first pair of complementary gate drive signals to drive a first complementary switch pairs and a second pair of complementary gate drive signals to drive a second complementary switch pair. The control circuit can vary a phase shift between the first pair of complementary gate drive signals and the second pair of complementary gate drive signals to regulate the flying capacitor voltage.
Abstract:
Systems and methods for preserving a pulse width modulation (PWM) resolution while increasing the frequency of a pulse width modulation (PWM) clock are provided. An electronic display backlight system may include a backlight element and backlight dimming circuitry. The backlight element may be driven according to a pulse width modulation (PWM) signal over a PWM clock cycle equal to a multiple M of a baseline PWM clock frequency associated with a baseline PWM resolution. The backlight dimming circuitry may receive a brightness code of the baseline PWM resolution and generate the PWM signal at least in part by dividing the brightness code by M.
Abstract:
Aspects of the subject technology relate to electronic devices having a display. The display includes a channel of light emitting diodes (LEDs) having controllable brightness levels and control circuitry coupled to the channel of LEDs. The control circuitry provides a pulse width modulated (PWM) signal having a duty cycle to control the brightness levels. An adaptive headroom control circuitry is configured to sense a headroom voltage signal for the channel of LEDs and apply a first time period for blanking the headroom voltage signal during the first time period that is associated with a settling time for the headroom voltage signal.
Abstract:
A pixel array may be illuminated with backlight illumination from a backlight. The backlight may include a two-dimensional array of light-emitting diodes, with each light-emitting diode being placed in a respective cell. Different light-emitting diodes may have unique brightness magnitudes based on the content of the given display frame. Driver integrated circuits may control one or more associated light-emitting diodes to have a desired brightness level. The driver integrated circuits may be formed in an active area of the backlight. The driver integrated circuits may be arranged in groups that are daisy chained together. A digital signal (that includes information such as addressing information) may be propagated through the group of driver integrated circuits. To manage thermal performance of the backlight, the backlight may include a thermally conductive layer and/or a heat sink structure. To increase the efficiency of the backlight, the backlight may include one or more reflective layers.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may include a feedforward loop and a feedback loop for a power supply for the light-emitting diodes. The light-emitting diodes may be arranged in strings that are individually controllable by a current control transistor on the string. The feedforward loop may determine a total upcoming load current for the power supply based on reference voltages for controlling each of the current control transistors. The output of the power supply may be modified based on a combination of a current from the feedforward loop and a current from the feedback loop.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may operate a light-emitting diode using a multi-peak pulse-width-modulation signal. The control circuitry may include a multi-stage driver having a relatively larger driver stage for providing a direct current through a light-emitting diode and a relatively smaller driver stage configured to cooperate with a pulse-width-modulation controller to pulse-width-modulate a current through the light-emitting diode.
Abstract:
A system may include a processor, a graphics controller, and a display. The graphics controller may generate video data to be presented on the display. The display may include a display panel, a backlight unit for providing the display panel with backlight, and a display timing controller for communicating with the graphics controller. The display may be used in non-movie mode and movie mode. The backlight unit may be operated in fixed backlight mode during the non-movie display mode and may be operated in dynamic pixel backlight (DPB) mode during the movie display mode. Backlight level adjustments may be sloped only during the non-movie mode. Backlight level sloping can be handled internally within the backlight unit, can be controlled using pulse width modulation with the display timing controller, and implemented using incremental backlight level adjustments with the processor.
Abstract:
A measured voltage drop across a power-line transistor is used as a sensing element to measure the current and detect an over-current condition for an LED backlight system. An over-current or short condition is detected when the measured voltage drop exceeds a threshold. Accurate detection of the over-current condition is achieved by calibrating the RDS-ON (i.e., internal resistance between drain and source, when transistor is on) of the power-line transistor. In one embodiment, the calibration of RDS-ON is performed by ramping down the threshold from an initial value and using the tripped threshold to determine the actual value for RDS-ON. In another embodiment, the calibration of RDS-ON is performed by using two thresholds, a first threshold to calibrate RDS-ON and a second threshold to detect the over-current condition.
Abstract:
Systems and methods for light-load efficiency in displays may include a backlight driver circuit that may adjust a gate drive voltage provided to a gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) in the boost converter based on the load conditions of light-emitting diodes used to illuminate the display panel. The backlight driver circuit may also switch between two different voltage sources to further broaden a range of gate drive voltages available to drive the gate of the MOSFET in the boost converter. As a result, the backlight driver circuit may decrease gate drive losses associated with the MOSFET, thereby increasing the efficiency of the boost converter.