Abstract:
This disclosure relates to providing negative stopping criteria for turbo decoding for a wireless device. A device may wirelessly receive turbo coded data. Turbo decoding may be performed on the turbo coded data. Performing turbo decoding may use one or more negative stopping criteria for early termination of the turbo decoding for each code block of the turbo coded data. The negative stopping criteria may be selected to terminate the turbo decoding of a code block early under poor wireless medium conditions. Turbo decoding of a code block may be terminated early if the one or more negative stopping criteria for the code block are met.
Abstract:
Some embodiments relate to an accessory device that may operate in a first mode, where the first radio of the accessory device is configured to perform cellular communication with a base station, or a second mode, where the second radio of the accessory device is configured to perform short-range communication with a companion device and utilize cellular functionality of the companion device to provide cellular communications through the companion device to the base station. The accessory device may operate to selectively transition between the first mode and the second mode based on one or more factors, such as signal strength of the short-range communication between the accessory device and the companion device, the relative batter level of the two devices, and/or a communications status of the companion device.
Abstract:
An apparatus, system, and method for parallelizing user equipment (UE) wakeup process are described. In one embodiment, power may be provided to a crystal oscillator to exit a first sleep state. One or more clocking signals may be provided to RF circuitry based on output from the crystal oscillator. Calibration and state restoration of the RF circuitry may be performed independent of baseband circuitry. State restoration of the baseband circuitry may be performed. Data may be received from a wireless communication network using the RF circuitry. The data may be processed using the baseband circuitry. State retention for the RF circuitry and the baseband circuitry may be performed. Finally, the crystal oscillator may be powered down to enter a second sleep state.
Abstract:
A wireless user equipment (UE) device may include a receiver and transmitter. The UE device may dynamically vary the fidelity requirements imposed on the analog signal processing performed by the receiver and/or the transmitter in response factors such as: amount of signal interference (e.g., out-of-band signal power); modulation and coding scheme; number of spatial streams; extent of transmitter leakage; and size and/or frequency location of resources allocated to the UE device. Thus, the UE device may consume less power on average than a UE device that is designed to satisfy fixed fidelity requirements associated with a worst case reception scenario and/or a worst case transmission scenario.
Abstract:
An apparatus, system, and method for parallelizing user equipment (UE) wakeup process are described. In one embodiment, power may be provided to a crystal oscillator to exit a first sleep state. One or more clocking signals may be provided to RF circuitry based on output from the crystal oscillator. Calibration and state restoration of the RF circuitry may be performed independent of baseband circuitry. State restoration of the baseband circuitry may be performed. Data may be received from a wireless communication network using the RF circuitry. The data may be processed using the baseband circuitry. State retention for the RF circuitry and the baseband circuitry may be performed. Finally, the crystal oscillator may be powered down to enter a second sleep state.
Abstract:
A user equipment (UE) device may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and/or additional optimization requirements. The UE device may communicate with a cellular base station according to a first mode of operation associated with the new device category, and may switch to communicating with the cellular base station according to a second mode of operation associated with a second (pre-existing) device category in response to the link budget requirements exceeding a specified value and the quality of service requirements not being sensitive. The UE device may also switch to communicating with the cellular base station according to a third mode of operation associated with a third (pre-existing) device type in response to the link budget requirement not exceeding the specified value, or the QoS requirements being sensitive and a downlink throughput requirement exceeding a specified throughput value.
Abstract:
A user equipment device (UE) may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and additional optimization requirements. The UE may use physical channels and procedures (e.g. it may receive and decode control channels) in a manner compatible with and not infringing on the operation of other UEs operating in the same network, while allowing the network more flexibility to assign resources. Specifically, resources for EPDCCH on UE-specific SS and EPDCCH on common SS may be shared. That is, the resources for two search spaces may be overlaid partially or in full, giving the network more flexibility in allocating resources. Furthermore the DCI formats for MPDCCH may be extended to devices operating according to the new device category, which enables the coverage enhancement of MTC for these devices.
Abstract:
A mobile device (UE) may decode the Physical Control Format Indicator Channel (PCFICH) blindly, which may include obtaining resource elements (REs) that are reserved for the Physical Downlink Control Channel (PDCCH), based on a largest value of a control format indicator (CFI), finding a total number of control channel elements (CCEs) according to the obtained REs, numbering the CCEs, and decoding the PDCCH for the largest value of the CFI over the numbered CCEs. Accordingly, the UE does not need to decode the PCFICH specifically. In some cases, the UE may indicate to the network that the UE is a constrained device, and the network may transmit control information according to a value intended for use by constrained devices. The UE may receive the transmitted value, and instead of decoding the PCFICH it may decode the control information based at least on the received value.
Abstract:
For paging user devices that are link budget limited (LBL), a base station transmits a special ID that is used by said devices to identify a paging frame and/or a paging occasion. When transmitting a paging message for an LBL device, the base station may use: (a) larger aggregation and larger CFI (than conventionally allowed) and (b) a larger number of resource blocks (than conventionally allowed) for paging payload. If paging messages for LBL devices saturate the paging frame capacity, the base station may allocate a plurality of special IDs. If paging messages for LBL devices and/or other data transfers saturate network capacity, at least a subset of the LBL devices may be directed to enter a connected-state discontinuous reception (DRX) mode, wherein those devices will remain in connected mode and periodically check for resource allocations. Paging payload information may be repeatedly transmitted in successive subframes, to support soft combining.
Abstract:
A wireless user equipment (UE) device may include a receiver and transmitter. The UE device may dynamically vary the fidelity requirements imposed on the analog signal processing performed by the receiver and/or the transmitter in response factors such as: amount of signal interference (e.g., out-of-band signal power); modulation and coding scheme; number of spatial streams; extent of transmitter leakage; and size and/or frequency location of resources allocated to the UE device. Thus, the UE device may consume less power on average than a UE device that is designed to satisfy fixed fidelity requirements associated with a worst case reception scenario and/or a worst case transmission scenario.