Abstract:
Systems, methods, and devices are provided to reduce a likelihood of image burn-in on an electronic display. Such an electronic device may include image processing circuitry and an electronic display. The image processing circuitry may receive image data and analyze the image data for risk of image burn-in and, based at least in part on the analysis of the image data, reduce a risk of image burn-in at least in part by reducing a local maximum pixel luminance value in at least one of a plurality of regions of the image data over time or by reducing a dynamic range headroom of the image data. The electronic display may display the image data with a reduced risk of image burn-in on the pixels of the electronic display.
Abstract:
Display panel stack-up structures are described. In an embodiment, a display panel includes a substrate, a light source, and a multiple layer thin film encapsulation over the light source. In an embodiment, the display panel additionally includes an anti-reflection layer over the light source. In an embodiment, an incoherence layer is located within the thin film encapsulation.
Abstract:
Circuits, methods, and apparatus that may estimate the power being consumed by an OLED display screen of an electronic device, may provide further information about that power usage, may modify or change functions performed by the electronic device based on that power usage, and may inform an application's developer about the amount of power being used by the electronic device while the electronic device is running the application. One example may estimate the power being used by an OLED display screen of an electronic device by determining the content of images being displayed during a duration. The estimated power may then be presented to a user. The estimated power may be used in decisions to modify or change parameters of the screen or other device components.
Abstract:
A flat-panel display device and method to prevent display panel burn-in through a decimated look-up table with pixel shifting in a display or an augmented reality display.
Abstract:
Circuits, methods, and apparatus that may estimate the power being consumed by an OLED display screen of an electronic device, may provide further information about that power usage, may modify or change functions performed by the electronic device based on that power usage, and may inform an application's developer about the amount of power being used by the electronic device while the electronic device is running the application. One example may estimate the power being used by an OLED display screen of an electronic device by determining the content of images being displayed during a duration. The estimated power may then be presented to a user. The estimated power may be used in decisions to modify or change parameters of the screen or other device components.
Abstract:
An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements and an ambient light sensor. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history, ambient light exposure, and temperature measurements.
Abstract:
An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.
Abstract:
An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.