Abstract:
Display panel stack-up structures are described. In an embodiment, a display panel includes a substrate, a light source, and a multiple layer thin film encapsulation over the light source. In an embodiment, the display panel additionally includes an anti-reflection layer over the light source. In an embodiment, an incoherence layer is located within the thin film encapsulation.
Abstract:
Display panel stack-up structures are described. In an embodiment, a display panel includes a substrate, a light source, and a multiple layer thin film encapsulation over the light source. In an embodiment, the display panel additionally includes an anti-reflection layer over the light source. In an embodiment, an incoherence layer is located within the thin film encapsulation.
Abstract:
A display may have organic light-emitting diode pixels formed from thin-film circuitry. An organic layer including planarization layers and a pixel definition layer may overlap the thin-film circuitry. Thin-film encapsulation may overlap the organic layer. The thin-film encapsulation may be formed from an organic dielectric layer interposed between two layers of inorganic dielectric material. A strip of peripheral crack-stopper structures may run along an edge of the display and may surround the array of pixels. The crack-stopper structures may include parallel inorganic lines formed from a first inorganic layer such as an inorganic layer of the thin-film circuitry. A strip of the organic layer may overlap the parallel inorganic lines. The crack-stopper structures may have parallel tapered polymer lines. The polymer lines may be overlapped by a second inorganic dielectric layer formed from the inorganic material of the thin-film encapsulation layer.
Abstract:
An electronic device may include a display having an array of organic light-emitting diodes formed on a substrate. An encapsulation layer may be formed over the array of organic light-emitting diodes to protect the organic light-emitting diodes from moisture and other contaminants. The encapsulation layer may include a transparent sheet of material interposed between upper and lower inorganic films. The reliability of the encapsulation layer is increased by dividing one or both of the inorganic films into multiple sub-layers. The sub-layers may have different densities and may be deposited in sequential steps. Additional moisture protection may be provided by forming a conformal thin-film coating over the organic light-emitting diodes. The conformal thin-film coating may be an aluminum oxide layer that is formed using atomic layer deposition techniques.
Abstract:
A display may have thin-film transistor (TFT) circuitry on a substrate. An array of organic light-emitting diodes may be formed on the thin-film transistor circuitry. The display may include inorganic brittle layers and organic and metal layers that are ductile and mechanically robust. To help prevent propagation of cracks and other defects along the edge of the display, the display may be provided with crack stop structures and crack detection circuitry. The crack detection circuitry may include one or more loops that are formed along the periphery of the display. The crack stop structures may include TFT/OLED structures formed in a staggered configuration. At least some of the brittle layers can be removed from the panel edge. An additional adhesion layer may also be formed directly on the substrate to help prevent inorganic layers from debonding from the surface of the substrate.
Abstract:
An electronic device may include a display and an optical sensor formed underneath the display. A pixel removal region on the display may at least partially overlap with the sensor. The pixel removal region may include a plurality of non-pixel regions each of which is devoid of thin-film transistors. The plurality of non-pixel regions is configured to increase the transmittance of light through the display to the sensor. In addition to removing thin-film transistors in the pixel removal region, additional layers in the display stack-up may be removed. In particular, a cathode layer, polyimide layer, and/or substrate in the display stack-up may be patterned to have an opening in the pixel removal region. A polarizer may be bleached in the pixel removal region for additional transmittance gains. The cathode layer may be removed using laser ablation with a spot laser or blanket illumination.
Abstract:
An electronic device may include a display having an array of organic light-emitting diodes formed on a substrate. An encapsulation layer may be formed over the array of organic light-emitting diodes to protect the organic light-emitting diodes from moisture and other contaminants. The encapsulation layer may include a transparent sheet of material interposed between upper and lower inorganic films. The reliability of the encapsulation layer is increased by dividing one or both of the inorganic films into multiple sub-layers. The sub-layers may have different densities and may be deposited in sequential steps. Additional moisture protection may be provided by forming a conformal thin-film coating over the organic light-emitting diodes. The conformal thin-film coating may be an aluminum oxide layer that is formed using atomic layer deposition techniques.
Abstract:
A display may have thin-film transistor (TFT) circuitry on a substrate. An array of organic light-emitting diodes may be formed on the thin-film transistor circuitry. The display may include inorganic brittle layers and organic and metal layers that are ductile and mechanically robust. To help prevent propagation of cracks and other defects along the edge of the display, the display may be provided with crack stop structures and crack detection circuitry. The crack detection circuitry may include one or more loops that are formed along the periphery of the display. The crack stop structures may include TFT/OLED structures formed in a staggered configuration. At least some of the brittle layers can be removed from the panel edge. An additional adhesion layer may also be formed directly on the substrate to help prevent inorganic layers from debonding from the surface of the substrate.