Abstract:
A display may have an array of pixels formed from thin-film transistor circuitry. The thin-film transistor circuitry may include thin-film layers of dielectric, semiconductor, and metal on a dielectric substrate. Test structures may be formed around the periphery of the substrate to facilitate testing of the thin-film circuitry during manufacturing. The test structures may include test pads that are coupled to the thin-film circuitry by test lines extending from the thin-film circuitry. Following testing, the outermost portions of the display and the test pads on these display portions may be removed by cutting the substrate along a substrate cut line. The test lines may be formed from parallel lines that are shorted together, semiconductor layers, multiple layers of conductive material, and other structures that resist corrosion along the cut line.
Abstract:
A touch screen display may include gate line driver circuitry coupled to a display pixel array. The display may be provided with intra-frame pausing (IFP) capabilities, where touch or other operations may be performed during one or more intra-frame blanking intervals. In one suitable arrangement, a gate driver circuit may include multiple gate line driver segments each of which is activated by a separate gate start pulse. Each gate start pulse may only be released at the end of an IFP interval. In another suitable arrangement, dummy gate driver units may be interposed among active gate driver units. Gate output signals may propagate through the dummy gate driver units during the IFP internal. In another suitable arrangement, each active gate driver unit may be provided with a buffer portion that protects at least some transistor in the gate driver unit from undesired stress.
Abstract:
An electronic device display may have an array of pixel circuits. Each pixel circuit may include an organic light-emitting diode and a drive transistor. Each drive transistor may be adjusted to control how much current flows through the organic light-emitting diode. Each pixel circuit may include one or more additional transistors such as switching transistors and a storage capacitor. Semiconducting oxide transistors and silicon transistors may be used in forming the transistors of the pixel circuits. The storage capacitors and the transistors may be formed using metal layers, semiconductor structures, and dielectric layers. Some of the layers may be removed along the edge of the display to facilitate bending. The dielectric layers may have a stepped profile that allows data lines in the array to be stepped down towards the surface of the substrate as the data lines extend into an inactive edge region.
Abstract:
A display may have an array of pixels. The array of pixels may have a shape such as a circular shape or other shape with a curved edge. Display driver circuitry may supply data signals to the pixels using folded vertical data lines and bisected horizontal gate lines. Each folded vertical lines may have a first segment in a left half of the array and a second segment in a right half of the display. Curved coupling segments in an inactive area of the display may be used in joining the first and second segments. Display driver circuits may be provided in top and bottom portions of the inactive area to supply data to respective top and bottom portions of the array. Gate driver output buffers may have different strengths in different rows of the array.
Abstract:
An electronic device may be provided with a display. The display may be formed from an array of organic light-emitting diode display pixels. Each display pixel may have an organic light-emitting diode having an anode and a cathode and may have an associated pixel circuit for controlling the light-emitting diode. The anodes may be formed from patches of metal arranged in an array on the display. The display pixels may be controlled using data lines and gate lines. The gate lines may control thin-film transistors in the pixel circuits. Gate driver circuitry along the left and right edges of the display may supply signals to the gate lines. The pixel circuits may be located in the center of the display between the gate driver circuitry. Some of the anodes may overlap the pixel circuits and some of the anodes may overlap the gate driver circuitry.
Abstract:
A display may include an array of pixels that receive control signals from a chain of gate drivers. Each gate driver may include a mix of silicon transistors, one or more semiconducting oxide transistors, and one or more capacitors. The semiconducting oxide transistors can each have a back gate terminal shorted to one of its source-drain terminals, shorted to its front gate terminal, or configured to receive a bias voltage. Configured in this way, the gate driver circuit can exhibit less threshold voltage drift and thus improved device reliability over time.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
A display may include an array of pixels. Each pixel in the array may include a drive transistor, emission transistors, a data loading transistor, a gate voltage setting transistor, an initialization transistor, an anode reset transistor, a storage capacitor, and an optional current boosting capacitor. A data refresh may include a initialization phase, a threshold voltage sampling phase, and a data programming phase. The threshold voltage sampling phase can be substantially longer than the data programming phase to decrease a current sampling level during the threshold voltage sampling phase, which helps reduce the display luminance sensitivity to temperature variations.
Abstract:
A display may include an array of pixels. Each pixel in the array includes an organic light-emitting diode coupled to associated thin-film transistors. The diode may be coupled to drive transistor circuitry, a data loading transistor, and emission transistors. The drive transistor circuitry may include at least two transistor portions connected in series. The data loading transistor has a drain region connected to a data line and a source region connected directly to the drive transistor circuitry. The data line may be connected to and overlap the drain region of the data loading transistor. The data line and the source region of the data loading transistor are non-overlapping to reduce row-to-row crosstalk.
Abstract:
An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The display may include transistors with gate conductors, a first planarization layer formed over the gate conductors, one or more contacts formed in a first source-drain layer within the first planarization layer, a second planarization layer formed on the first planarization layer, one or more data lines formed in a second source-drain layer within the second planarization layer, a third planarization layer formed on the second planarization layer, and a data line shielding structure formed at least partly in a third source-drain layer within the third planarization layer. The data line shielding structure may be a routing line, a blanket layer, a mesh layer formed in one or more metal layers, and/or a data line covering another data line.