Abstract:
A data communication architecture delivers a wide variety of content, including audio and video content, to consumers. The architecture employs channel bonding to deliver more bandwidth than any single communication channel can carry. The architecture includes intermediate network devices that may receive content and send content using different groups of communication channels. The network device may process content received across a first set of communication channels for transmission across a second set of communication channels different from the first set. Such processing may preserve a program order of the content during delivery to a destination device.
Abstract:
Aspects of a method and system for dynamic adjustment of power, antenna direction and frequencies in a femtocell network are provided. In this regard, a communication system may comprise a plurality of femtocells, one or more base stations, and a femtocell management entity that coordinates operation of the plurality of femtocells. One or more parameters may be communicated from one of the plurality of femtocells and/or one or more base stations to the femtocell management entity. The femtocell management entity may be enabled to utilize the one or more parameters to determine configuration information for one of the plurality of femtocells and/or for one or more remaining ones of the plurality of femtocells. One of the plurality of femtocells may be enabled to receive the determined configuration information from the femtocell management entity. One of the plurality of femtocells may be configured utilizing the received determined configuration information.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, different network types may be channel bonded to function as a single logical channel.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute data streams to bonded channels that are clocked independently. A system is provided for synchronizing the bonded channels.