摘要:
A method for detecting a thickness of a layer of a wafer to be processed is provided. The method includes defining a plurality of sensors configured to create a set of complementary sensors proximate the wafer. Further included in the method is distributing the plurality of sensors along a particular radius of the wafer such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
摘要:
A system for processing a wafer is provided. The system includes a chemical mechanical planarization (CMP) tool. The CMP tool includes a wafer carrier defined within a housing. A carrier film is affixed to the bottom surface and supports a wafer. A sensor embedded in the wafer carrier. The sensor is configured to induce an eddy current in the wafer to determine a proximity and a thickness of the wafer. A cluster of sensors external to the CMP tool is included. The cluster of sensors is in communication with the sensor embedded in the wafer carrier and substantially eliminates a distance sensitivity. The cluster of sensors provides an initial thickness of the wafer to allow for a calibration to be performed on the sensor embedded in the wafer carrier. The calibration offsets variables causing inaccuracies in the determination of the thickness of the wafer during CMP operation. A method and an apparatus are also provided.
摘要:
In chemical mechanical polishing, a wafer carrier plate is provided with a cavity for reception of a sensor positioned very close to a wafer to be polished. Energy resulting from contact between a polishing pad and an exposed surface of the wafer is transmitted only a very short distance to the sensor and is sensed by the sensor, providing data as to the nature of properties of the exposed surface of the wafer, and of transitions of those properties. Correlation methods provide graphs relating sensed energy to the surface properties, and to the transitions. The correlation graphs provide process status data for process control.
摘要:
Methods for reducing contamination of semiconductor substrates after processing are provided. The methods include heating the processed substrate to remove absorbed chemical species from the substrate surface by thermal desorption. Thermal desorption can be performed either in-situ or ex-situ. The substrate can be heated by convection, conduction, and/or radiant heating. The substrate can also be heated by treating the surface of the processed substrate with an inert plasma during which treatment ions in the plasma bombard the substrate surface raising the temperature thereof. Thermal desorption can also be performed ex-situ by applying thermal energy to the substrate during transport of the substrate from the processing chamber and/or by transporting the substrate to a transport module (e.g., a load lock) or to a second processing chamber for heating. Thermal desorption during transport can be enhanced by purging an inert gas over the substrate surface.
摘要:
Methods for reducing contamination of semiconductor substrates after processing are provided. The methods include heating the processed substrate to remove adsorbed chemical species from the substrate surface by thermal desorption. Thermal desorption can be performed either in-situ or ex-situ. The substrate can be heated by convection, conduction, and/or radiant heating. The substrate can also be heated by treating the surface of the processed substrate with an inert plasma during which treatment ions in the plasma bombard the substrate surface raising the temperature thereof. Thermal desorption can also be performed ex-situ by applying thermal energy to the substrate during transport of the substrate from the processing chamber and/or by transporting the substrate to a transport module (e.g., a load lock) or to a second processing chamber for heating. Thermal desorption during transport can be enhanced by purging an inert gas over the substrate surface.