Abstract:
A method for processing a substrate is provided which includes generating a meniscus on the surface of the substrate and applying photolithography light through the meniscus to enable photolithography processing of a surface of the substrate.
Abstract:
A method for processing a substrate is provided which includes generating a meniscus on the surface of the substrate and applying photolithography light through the meniscus to enable photolithography processing of a surface of the substrate.
Abstract:
A method for filling a trench of a substrate in a controlled environment is provided. The method initiates with etching a trench in the substrate in a first chamber of a cluster tool. A barrier layer configured to prevent electromigration is deposited over an exposed surface of the trench in a second chamber of the cluster tool and the trench is filled with a gap fill material deposited directly onto the barrier layer in the cluster tool. A semiconductor device fabricated by the method is also provided.
Abstract:
A semiconductor processing system is provided. The semiconductor processing system includes a first sensor configured to isolate and measure a film thickness signal portion for a wafer having a film disposed over a substrate. A second sensor is configured to detect a film thickness dependent signal in situ during processing, i.e. under real process conditions and in real time. A controller configured to receive a signal from the first sensor and a signal from the second sensor. The controller is capable of determining a calibration coefficient from data represented by the signal from the first sensor. The controller is capable of applying the calibration coefficient to the data associated with the second sensor, wherein the calibration coefficient substantially eliminates inaccuracies introduced to the film thickness dependent signal from the substrate. A method for calibrating an eddy current sensor is also provided.
Abstract:
A vacuum plasma processor includes a roof structure including a dielectric window carrying (1) a semiconductor plate having a high electric conductivity so it functions as an electrode, (2) a hollow coil and (3) at least one electric shield. The shield, coil and semiconductor plate are positioned to prevent substantial coil generated electric field components from being incident on the semiconductor plate. During a first interval the coil produces an RF electromagnetic field that results in a plasma that strips photoresist from a semiconductor wafer. During a second interval the semiconductor plate and another electrode produce an RF electromagnetic field that results in a plasma that etches electric layers, underlayers and photoresist layers from the wafer.
Abstract:
A chemical mechanical planarization (CMP) system is provided. The CMP system includes a wafer carrier configured to support a wafer during a planarization process, the wafer carrier including a sensor configured to detect a signal indicating a stress being experienced by the wafer during planarization. A computing device in communication with the sensor is included. The computing device is configured to translate the signal to generate a stress map for analysis. A stress relief device responsive to a signal received from the computing device is included. The stress relief device is configured to relieve the stress being experienced by the wafer.
Abstract:
A method for detecting a thickness of a layer of a wafer to be processed is provided. The method includes defining a plurality of sensors configured to create a set of complementary sensors proximate the wafer. Further included in the method is distributing the plurality of sensors along a particular radius of the wafer such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
Abstract:
A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer.
Abstract:
A plasma processing system for processing a substrate, is disclosed. The plasma processing system includes a single chamber, substantially azimuthally symmetric plasma processing chamber within which a plasma is both ignited and sustained for the processing. The plasma processing chamber has no separate plasma generation chamber. The plasma processing chamber has an upper end and a lower end. The plasma processing chamber includes a material that does not substantially react with the reactive gas chemistries that are delivered into the plasma processing chamber. In addition, the reactant gases that are flown into the plasma processing chamber are disclosed.
Abstract:
A system and method of measuring a metallic layer on a substrate within a multi-step substrate process includes modifying a metallic layer on the substrate such as forming a metallic layer or removing at least a portion of the metallic layer. At least one sensor is positioned a predetermined distance from the surface of the substrate. The surface of the substrate is mapped to determine a uniformity of the metallic layer on the surface of the substrate.