Abstract:
An image sensor and a method for manufacturing an image sensor that has an increased aspect ratio. An image sensor and a method for manufacturing an image sensor that have a relatively large process margin (e.g. even in high level pixels), which may reduce and/or eliminate restrictions in downscaling an image sensor. An image sensor may include at least one of a first unit pixel including a first transfer transistor, a second unit pixel including a second drive transistor, and a contact electrically connecting a floating diffusion region of the first unit pixel with the second drive transistor of the second unit pixel. A method of manufacturing an image sensor including at least one of forming a first unit pixel including a first transfer transistor, forming a second unit pixel including a second drive transistor, and forming a contact electrically connecting a floating diffusion region of the first unit pixel with the second drive transistor of the second unit pixel.
Abstract:
The present invention relates to a method of preparing rubber-modified styrene copolymer resin with excellent transparency and impact resistance, specifically to a method of preparing transparent resin of rubber-modified styrene copolymer comprising graft-copolymerizing styrene monomer and (meth)acrylate monomer in the presence of block or random styrene-butadiene copolymer which has 30-50% of styrene skeleton content and 20-40 cp of 5% toluene solution viscosity at 25 iÉ. According to the method of the present invention, the transparent resin containing the rubber particles of a double structure comprising onion and core-shell structure can provide transparent resin of rubber-modified styrene copolymer resin with excellent transparency and impact resistance as well as good gloss.
Abstract:
The present invention provides an optical film and s retardation film characterized in that each of them includes: an acrylic resin; and 20-65 parts by weight of at least two graft copolymers containing a conjugated diene-based rubber, based on 100 parts by weight of the acrylic resin, wherein at least two of the graft copolymers have different particle sizes. The present invention also provides a production method therefore.
Abstract:
Provided are a resin composition for an optical film including an alkyl(meth)acrylate unit, a benzyl(meth)acrylate unit, a (meth)acrylic acid unit, and a unit expressed by Chemical Formula I, an optical film, a polarizing plate, and an image display device using the resin composition.
Abstract:
Provided is a method of preparing a resin composition for an optical film. The method includes forming a four-component copolymer by reacting an alkyl(meth)acrylate-based monomer, an acrylate-based monomer containing a benzene ring, and a (meth)acrylic acid monomer by using a continuous bulk polymerization method; and forming a resin composition for an optical film by removing unreacted monomer and solvent from a reaction product in a devolatilizer.
Abstract:
Provided is an acrylic copolymer comprising; an alkyl (meth)acrylate monomer; a monomer comprising a cyclic pendant structure; and a tert-butyl (meth)acrylate monomer and/or (meth)acrylamide monomer. Also provided is a resin composition comprising the same and an optical film and an IPS mode liquid crystal display device using the same.
Abstract:
The present invention relates to acryl-based copolymers including an alkyl(meth)acrylate-based monomer; a (meth)acrylate-based monomer containing an aromatic ring; and a maleimide-based monomer, a resin composition including the same, and an optical film prepared by using the same.
Abstract:
The present invention relates to an optical film and method of manufacturing the same. The optical film of the present invention includes an acrylic resin and a core-shell type graft copolymer wherein the core includes a conjugate diene rubber, and the shell includes an acrylic monomer, an aromatic vinyl monomer, and a maleimide monomer.
Abstract:
An image sensor and a method of manufacturing an image sensor. An image sensor may include a readout circuitry having a metal line on and/or over a first substrate. An image sensor may include an image sensing part having a first conductive-type conductive layer and/or a second conductive-type conductive layer over a metal line. An image sensor may include a pixel division area formed on and/or over an image sensing part corresponding to a pixel boundary. An image sensor may include a ground contact on and/or over a pixel division area. An image sensor may include a contact plug connected with a sidewall of an image sensing part. A method of manufacturing an image sensor is disclosed.
Abstract:
An organic/inorganic composite separator includes a porous substrate having a plurality of pores; and a porous coating layer formed on at least one surface of the porous substrate with a plurality of inorganic particles and a binder polymer. The binder polymer is a copolymer including: (a) a first monomer unit having a contact angle to a water drop in the range from 0° to 49°; and (b) a second monomer unit having a contact angle to a water drop in the range from 50° to 130°. This organic/inorganic composite separator has excellent thermal stability, so it may restrain an electric short circuit between a cathode and an anode. In addition, the separator may prevent inorganic particles in the porous coating layer from being extracted during an assembling process of an electrochemical device, thereby improving stability of an electrochemical device.