Abstract:
The disclosure relates to a process for making titanium dioxide, comprising: reacting titanium tetrachloride with oxygen by contacting the titanium tetrachloride with the oxygen in a vapor phase reactor under mixing conditions and at an elevated temperature to form a gaseous product stream containing titanium dioxide; separating the titanium dioxide from the gaseous product stream to form a process stream; analyzing the process stream to detect a concentration of titanium tetrachloride in the process stream; comparing the concentration of titanium tetrachloride detected in the process stream to an aim point concentration; and modifying the oxidation conditions to restore or maintain the concentration of titanium tetrachloride in the process stream at the aim point. In one embodiment, the process further comprises contacting the gaseous product stream with silicon tetrachloride under mixing conditions and at an elevated temperature to at least partially encapsulate the titanium dioxide with a silicon-containing compound and separating the at least partially encapsulated titanium dioxide from the gaseous product stream and analyzing the process stream to detect a concentration silicon tetrachloride for comparison to a silicon tetrachloride aim point concentration so that the conditions for silicon tetrachloride contacting can be modified to restore or maintain the concentration of silicon tetrachloride in the process stream.
Abstract:
One aspect of the invention is to provide a composition comprising a titanium dioxide particle having on the surface of said particle a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide; said substantially encapsulating layer having on its surface at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof. Another aspect of the invention is to provide processes for producing said composition.
Abstract:
The disclosure relates to a process for making titanium dioxide, comprising: reacting titanium tetrachloride with oxygen by contacting the titanium tetrachloride with the oxygen in a vapor phase reactor under mixing conditions and at an elevated temperature to form a gaseous product stream containing titanium dioxide; separating the titanium dioxide from the gaseous product stream to form a process stream; analyzing the process stream to detect a concentration of titanium tetrachloride in the process stream; comparing the concentration of titanium tetrachloride detected in the process stream to an aim point concentration; and modifying the oxidation conditions to restore or maintain the concentration of titanium tetrachloride in the process stream at the aim point. In one embodiment, the process further comprises contacting the gaseous product stream with silicon tetrachloride under mixing conditions and at an elevated temperature to at least partially encapsulate the titanium dioxide with a silicon-containing compound and separating the at least partially encapsulated titanium dioxide from the gaseous product stream and analyzing the process stream to detect a concentration silicon tetrachloride for comparison to a silicon tetrachloride aim point concentration so that the conditions for silicon tetrachloride contacting can be modified to restore or maintain the concentration of silicon tetrachloride in the process stream.
Abstract:
Titanium dioxide nanopowder is produced by a process, comprising: (a) reacting titanium tetrachloride and an oxygen containing gas in the vapor phase in a flame reactor, at a flame temperature of at least about 800° C. in the presence of (i) water vapor in an amount ranging from about 1000 to about 50,000 parts per million, based on the weight of titanium dioxide under production, (ii) a diluent gas in an amount greater than about 100 mole percent based on the titanium tetrachloride and oxygen containing gas and (iii) a nucleant consisting essentially of a cesium substance wherein the cesium substance is present in an amount ranging from about 10 to about 5000 parts per million, based on the weight of the titanium dioxide under production, the pressure of reaction being sufficient to form titanium dioxide nanopowder.