Abstract:
A leakage current detection and interruption device for power cord includes a switch module, a leakage current detection module, an open circuit detection module, and a trigger module. The switch module controls the electrical connection between input and output ends of the power cord. The leakage current detection module has two leakage current detection lines to collect leakage current on the power supply lines of the power cord. The open circuit detection module is coupled to the leakage current detection module, and generates an open-circuit fault signal when an open circuit exists in at least one of the two leakage current detection lines. The trigger module is coupled to the switch module and the open circuit detection module, and receives a leakage fault signal and/or the open-circuit fault signal, and in response thereto, drives the switch module to disconnect the electrical connection between the input and output ends.
Abstract:
A power plug includes a shell, input insertion plates, output power lines, a push button on the shell, and a trip assembly inside the shell for controlling electrical coupling between the input insertion plates and output power lines. The trip assembly includes a light emitting element, electrical coupling terminals, and a drive member mechanically coupled to the push button and configured to, in response to a pressing of the push button, control electrical coupling of the electrical coupling terminals, which in turn controls the electrical coupling between the input insertion plates and output power lines. The drive member includes a reflective portion that reflects a part of the light from the light emitting element to the push button as an indicator light. The dual function drive member that accomplishes both mechanical coupling and light transmission reduces the number of components. A device with an electrical control circuit is also disclosed.
Abstract:
A power cord for a leakage current detection and interruption device including two insulated power supply lines, two leakage current detection lines for detecting a leakage current on the power supply lines, and two conductor wires. The two leakage current detection lines and the two conductor wires are electrically insulated from each other along the length of the power cord but are electrically connected in series to form a detection current path of a leakage current detection module. The leakage current detection and interruption device further includes a detection monitoring module, coupled in series to the detection current path, for detecting an open circuit condition in the detection current path. The device further includes a switch module and a drive module, which can cut off power supply in response to a detected leakage current or open circuit condition in the detection current path.
Abstract:
A leakage current detection and interruption (LCDI) device for a power cord includes a switch unit configured to control an electrical connection between an input end and an output end, and a leakage current protection unit, which includes a switch drive module and a leakage current detection module. The leakage current detection module includes first and second leakage current detection lines coupled in series. The switch drive module is configured to control the switch unit based on a leakage current signal generated by the leakage current detection module to disconnect the electrical connection. The LCDI device can detect whether the first and second leakage current detection lines are intact, thereby ensuring the reliability of the device.
Abstract:
A leakage current protection plug includes a body formed by a top cover and a base, a moving assembly disposed in the body, and output wires. The moving assembly includes a control circuit board, and a detector assembly and a trip assembly disposed on the control circuit board, wherein power input insertion plates and power output moving contact arms are assembled with the moving assembly. Each output moving contact arm is formed integrally and fixed to the detector assembly, and the output ends of the output moving contact arms are directly connected to the output conductor wires. The device has a simple overall structure and can be reliably assembled. By using integrally formed output moving contact arms to directly couple the input and output, it improves the accuracy of the leakage current detection parameters, reduces internal transfers and solder points, and reduces the size and cost of the plug.
Abstract:
A power cord leakage current detection and protection device, including a switch unit configured to control an electrical connection between an input end and an output end of the device; a leakage current protection unit, which includes a switch drive module and a leakage current detection module, the switch drive module configured to control the switch unit based on a leakage current signal detected by the leakage current detection module, wherein the leakage current detection module includes a leakage current detection line configured to detect whether a leakage current is present on a first power supply line and/or a second power supply line, and a signal feedback line configured to detect whether the leakage current detection line has an open circuit; and a test unit, including a test switch, coupled to the a leakage current protection unit, wherein when the test switch is closed, the switch drive module controls the switch unit based on a signal on the signal feedback line.
Abstract:
A leakage current protection device includes an electrical and mechanical assembly which includes: a circuit board; moving contact plates; an auxiliary switch; a reset shaft, having a hook in its lower portion, a bottom end of the reset shaft being set against one end of a reset spring, another end of the reset spring being set against the base; a disconnect mechanism, having a hook at its upper portion to engage with the hook of the reset shaft in a vertical direction; a trip coil and a trip plunger disposed on a side of the disconnect mechanism, where the disconnect mechanism is driven by the trip plunger to move horizontally. The disconnect mechanism further includes a pushing end that controls the auxiliary switch and lifting levers that control the moving contact plates.
Abstract:
This invention provides a fireproof separator board, which is made of a flame-retardant, high temperature resistant material and disposed within an insulating casing of an electrical device, for preventing the heat generated by the electrical components of the electrical device from being conducted to the insulating casing. This invention also provides a plug-based circuit interrupter that includes the fireproof separator board. The fireproof separator board and the plug-based circuit interrupter of this invention can effectively prevent high temperature and fire caused by the electrical components that could melt the casing.
Abstract:
A leakage current detection interrupter (LCDI) with self-testing function, which includes: a leakage current detection unit, including multiple current-carrying wires and at least one leakage current detection wire for detecting a leakage current of the current-carrying wires; a phase protection unit, coupled to at least one current-carrying wire on the input side of the multiple current-carrying wires, and coupled to at least one current-carrying wire on the output side of the multiple current-carrying wires via the leakage current detection unit, to form a current loop; wherein the phase protection unit can generate a control signal to disconnect the electrical coupling between the LCDI and the power source. By using a temperature controlled module, the leakage current detection unit and the phase protection unit, an LCDI with self-testing function is achieved. When there is a leakage current in the current-carrying wires, or the current-carrying wire is open, or the temperature of the electrical appliance exceeds a predefined range, or the leakage current detection wire is broken, the LCDI can disconnect its electrical coupling with the power source, ensuring the safety of the appliance and enhancing the quality of the electrical grid.
Abstract:
A leakage current detection and interruption (LCDI) device includes a switch module to control electrical connection of first and second power supply lines between input and output ends, a leakage current detection module including first and second leakage current detection lines respectively covering the first and second power supply lines to detect leakage currents thereon, a detection monitoring module coupled to the leakage current detection module and the first and second power supply lines to generate an open circuit detection signal in response to an open circuit condition in the first or second leakage current detection line, and a test module including a normally closed test switch coupled to the first or second leakage current detection line, wherein when the test switch is manually operated to open, the switch module disconnects the first and second power supply lines between the input and output ends.