Abstract:
A plasma display panel (PDP) includes: a front substrate; a rear substrate disposed in opposition to the front substrate; first barrier ribs disposed between the front substrate and the rear substrate, defining discharge cells with the front substrate and the rear substrate, and formed of a dielectric material; front discharge electrodes disposed inside the first barrier ribs so as to surround the discharge cells; rear discharge electrodes disposed inside the first barrier ribs so as to surround the discharge cells, and spaced apart from the front discharge electrodes; phosphor layers disposed in the discharge cells; and a discharge gas deposited in the discharge cells. With respect to a longitudinal sectional view of the first barrier ribs, a virtual horizontal axis which extends from a lowermost portion of each of the rear discharge electrodes and is parallel to the front substrate intersects a lateral surface of the first barrier ribs at a certain position. An angle between a tangent line at the intersection of the horizontal axis and a lateral surface of the first barrier ribs, on one hand, and a virtual vertical axis orthogonal to the horizontal axis, on the other hand, ranges from 4° to 17°.
Abstract:
A plasma display panel includes first and second substrates facing each other and divided into a display area and a non-display area, barrier ribs disposed between the first and second substrates, the barrier ribs defining a display discharge cell in the display area and a non-display discharge cell in the non-display area, a sustain electrode disposed between the first and second substrates, an address electrode disposed between the first and second substrates, the address electrode being perpendicular to the sustain electrode, the address electrode including a first dummy address electrode that protrudes on at least one end from an outermost barrier rib in the non-display region, and a composite layer covering the address electrode including at least a part of the first dummy address electrode. The composite layer may be formed of the same material as and may be a single body with the barrier ribs.
Abstract:
In an apparatus to manufacture a dielectric layer that can reduce a spreading process of the dielectric layer, and a method of manufacturing a Plasma Display Panel (PDP) with reduced manufacturing time using the apparatus, the apparatus includes: a surface plate adapted to receive a substrate; a slot die adapted to move in two directions above the surface plate; a nozzle arranged on one end of the slot die and adapted to spread a coating fluid on top of the substrate to form the dielectric layer; a coating fluid tank adapted to store the coating fluid to be supplied to the nozzle of the slot die; and a coating fluid pump adapted to supply the coating fluid from the coating fluid tank to the nozzle of the slot die.
Abstract:
A plasma display panel (PDP) is provided capable of improving luminous efficiency by enlarging a discharge space, and lowering a discharge firing voltage. The plasma display panel includes a first dielectric layer next to a discharge cell in which a plurality of grooves are formed such that each groove is formed between an X electrode and a Y electrode of the discharge cell and covering the sustain electrode pairs and the intermediate electrodes.
Abstract:
A Plasma Display Panel (PDP) includes: a front panel; a rear panel parallel to and separated from a front panel; a plurality of first barrier ribs of a dielectric, arranged between the front panel and the rear panel, and adapted to define discharge cells together with the front panel and the rear panel; front discharge electrodes and rear discharge electrodes disposed apart to surround each discharge cell within the first barrier ribs, each of the front discharge electrodes and rear discharge electrodes including main line parts and corner parts adapted to connect the adjacent main line parts, wherein inner surfaces of the corner parts facing each discharge cell, are rounded; a phosphor layer arranged in each discharge cell defined by the first barrier ribs; and a discharge gas filling each discharge cell.
Abstract:
A plasma display panel having a light absorption reflection film that does not reflect light emitted from a discharge space in a non-discharge region includes: a rear substrate; a plurality of address electrodes arranged on a surface of the rear substrate; a rear dielectric layer arranged on the rear substrate to cover the address electrodes; a plurality of barrier ribs arranged on the rear dielectric layer to define discharge cells; a front substrate facing the rear substrate; a plurality of sustaining electrode pairs composed of X and Y electrodes; a light absorption reflection film including a first light absorption reflection film arranged between the adjacent sustaining electrode pairs and a second light absorption reflection film having a different width than that of the first light absorption reflection film, the second light absorption reflection film arranged on a lower surface of the first light absorption reflection film; and a front dielectric layer arranged on a lower surface of the front substrate to cover the X and Y electrodes and the light absorption reflection film.
Abstract:
A Plasma Display Panel (PDP) includes: a front panel having a front plate and a plurality of electrodes arranged on a surface of the front plate in a predetermined pattern and a back panel having a back plate facing the front plate, a plurality of electrodes arranged on a surface of the back plate in a predetermined pattern to correspond to the plurality of electrodes of the front plate, and at least one ventilation hole. At least two back plates are formed by cutting one base plate on which at least two ventilation holes are formed. Each ventilation hole has a first width in a first edge direction of the back plate and a distance from the first edge to a center of the at least one ventilation hole is at least twice that of the first width.
Abstract:
A plasma display panel (PDP) includes a first substrate, a second substrate facing the first substrate, inner barrier ribs in a display region of the PDP between the first substrate and the second substrate to define discharge cells, at least one dummy barrier rib in a non-display region of the PDP between the first substrate and the second substrate, the non-display region being external to the display region, and the dummy barrier rib including at least one curved end portion and a cavity in the curved end portion, discharge electrodes between the first substrate and the second substrate to generate a discharge in the discharge cells, and at least one phosphor layer in each discharge cell.
Abstract:
A plasma display panel including a first and second substrates. A plurality of discharge electrodes and a barrier rib structure are between the substrates. A plurality of discharge cells are defined between the substrates and at least one spacer is between the substrates to maintain a substantially constant distance between the substrates. At least one groove is in at least one of the substrates with the spacer in the groove. A frit is between the substrates to seal the substrates. Phosphor layers are in the discharge cells, and a discharge gas is filled in the discharge cells.
Abstract:
A plasma display panel including: first and second substrates facing each other; a barrier rib defining a plurality of discharge cells, disposed between the first and second substrates; a plurality of address electrodes disposed on the first substrate, adjacent to the discharge cells; and a plurality of transparent electrodes disposed on the second substrate, facing the discharge cells; and bus electrode connecting the transparent electrodes. Each of the transparent electrodes defines an opening through which light is discharged from the discharge cells. The transparent electrodes can further include one or more protrusions that extend into the openings.