Abstract:
A process to prepare an ethylene-based polymer, said process comprising polymerizing a mixture comprising ethylene, at a pressure greater than, or equal to, 100 MPa, in the presence of at least one free-radical initiator; and in a reactor system comprising at least one reactor and at least one Hyper-compressor, and wherein at least one oil formulation, optionally comprising one or more lubrication agents, is added to the Hyper-compressor; and wherein at least one of the following steps takes place: A) thermally treating the one or more lubrication agents, in an oxygen-free atmosphere, to achieve a peroxide level≤10 ppm, based on the weight of the lubrication agent(s), and then adding said agent(s) to the oil formulation, prior to adding the oil formulation to the Hyper-compressor; or B) thermally treating the oil formulation, in an oxygen-free atmosphere, to achieve a peroxide level≤10 ppm, based on the weight of the oil formulation, prior to adding the oil formulation to the Hyper-compressor; C) a combination of A and B.
Abstract:
A process to form an ethylene-based polymer comprises polymerizing a reaction mixture comprising ethylene, at least one symmetrical polyene and at least one chain transfer agent system comprising at least one chain transfer agent (CTA) in the presence of at least one free-radical initiator and in a reactor configuration comprising at least two reaction zones, reaction zone 1 and reaction zone i (i≥2), wherein reaction zone i is downstream from reaction zone 1. The ratio of “the activity of the CTA system of the feed to the first reaction zone” to the “activity of the CTA system of the cumulative feed to the reaction zone i,” (Z1/Zi), is less than or equal to (0.8-0.2*log(Cs)), wherein Cs is from 0.0001 to 10.
Abstract:
A first ethylene-based interpolymer comprising, in polymerized form, monomer units derived from ethylene and from a benzocyclobutene (VBCB) structure of Structure 1; wherein n is from 3 to 10; and wherein the ethylene-based polymer comprises, in polymerized form, from 0.02 to 0.70 wt % of the Structure 1, based on the weight of the first ethylene-based interpolymer, as determined by 1H NMR is provided. Further provided is a composition which comprises a second ethylene-based inter-polymer formed by thermally treating a first ethylene-based interpolymer.
Abstract:
An ethylene-based polymer, e.g., LDPE, with a low dissipation factor is made by a process comprising the step of contacting at polymerization conditions ethylene and, optionally, one or more comonomers, e.g., an alpha-olefin, with at least one carbon-carbon (C—C) hydrocarbyl, free-radical initiator of Structure 1: wherein R1, R2, R3, R4, R5 and R6, are each, independently, hydrogen or a hydrocarbyl group and wherein, optionally, two or more R groups (R1, R2, R3, R4, R5 and R6) form a ring structure, with the provisos that at least one of R2 and R5, and at least one of R3 and R6 is a hydrocarbyl group of at least two carbon atoms, e.g., an alkaryl of at least seven carbon atoms.
Abstract:
An ethylene-based polymer, e.g., LDPE, with a low dissipation factor is made by a process comprising the step of contacting at polymerization conditions ethylene and, optionally, one or more comonomers, e.g., an alpha-olefin, with at least one carbon-carbon (C—C) hydrocarbyl, free-radical initiator of Structure 1: wherein R1, R2, R3, R4, R5 and R6, are each, independently, hydrogen or a hydrocarbyl group and wherein, optionally, two or more R groups (R1, R2, R3, R4, R5 and R6) form a ring structure, with the provisos that at least one of R2 and R5, and at least one of R3 and R6 is a hydrocarbyl group of at least two carbon atoms, e.g., an alkaryl of at least seven carbon atoms.
Abstract:
Improved reaction processes comprise reacting a mixture to form a product comprising a metal alkyl, metal oxide, or mixture thereof and then passing said product to a post-reactor heat exchanger. The improvement comprises one or more of the following: (1) reacting said metal alkyl compound with an acid to produce a soluble metal ester; or (2) adding an ionic surfactant; or (3) adding a mixture comprising an antioxidant to the product under conditions sufficient to avoid formation of significant amounts of insoluble metal or metal compounds derived from said metal alkyl compound; or (4) purging said post-reactor heat exchanger with an inert gas under conditions to remove metal oxide from the post-reactor heat exchanger.
Abstract:
Disclosed herein is an apparatus comprising a shell; the shell having an inlet port for introducing a polymer solution into the shell and an outlet port for removing the polymer solution from the shell; wherein the polymer solution comprises a polymer and a solvent that is operative to dissolve the polymer; a plurality of plates in the shell; where the plurality of plates is stacked one atop the other to define a central passage that is in fluid communication with the inlet port of the shell; where the plurality of plates further defines a plurality of conduits, each conduit extending radially outwards from the central passage, where the plurality of conduits is in fluid communication with the central passage; and where the apparatus is operated at a pressure and a temperature effective to maintain the polymer solution in a single phase during its travel through the apparatus.
Abstract:
The present disclosure provides a process. In an embodiment, the process includes providing a multifunctional branching agent (MFBA). The MFBA has A) three or more carbon-carbon double bonds with the provisos (1) that the MFBA is not a polymer of butadiene, and (2) the MFBA does not contain an acrylate group or a methacrylate group. The MFBA has B) a total reactivity, R, greater than 3 and less than 40, (3
Abstract:
The present disclosure provides a process. In an embodiment, the process includes contacting, under polymerization conditions, one or more C6-C14 α-olefin monomers with a bis-biphenylphenoxy catalyst. The process includes forming a polymer composed of one or more C6-C14 α-olefin monomers, and having an absolute weight average molecular weight (Mw(abs)) greater than 1,300,000 g/mol and a Mw(abs)/Mn(abs) from 1.3 to 3.0.
Abstract:
The present disclosure provides an ethylene-based polymer. The ethylene-based polymer is formed from reacting, under polymerization conditions, ethylene monomer and bisallyl maleate (“BAIIM”). The present ethylene-based polymer with ethylene monomer and bisallyl maleate branching agent is interchangeably referred to as “BAIIM-PE.”