Abstract:
The present invention is directed to an apparatus and method for attaching balls to a substrate for forming a ball grid array. The apparatus consists of two pole pieces, a magnetizing coil, and an excitation coil. The first pole piece has an alignment plate having a plurality of openings, and a plurality of tips which can be magnetized by the magnetizing coil to attract a ball into each opening. Once the balls are attracted into the openings, excess balls are removed and the substrate is aligned with the balls such that each ball is in contact with a respective pad on the substrate. The first pole piece having the balls and substrate position thereon is then placed into a receiving area of the second piece. An excitation coil is excited with a high frequency signal to heat the balls and reflow solder that has been previously applied thereto. The assembly is then cooled and removed from the device and the ball grid array is complete.
Abstract:
A high speed stamping and forming machine (10) is provided having a ram (34) capable of sustained high speed operation. The ram (34) is pivotally attached to a connecting rod (36) which is eccentrically coupled to a drive shaft by means of an eccentric (40) and hydrostatic bearing (50). The drive shaft (30) is journaled in hydrostatic bearings (84, 86) in the frame (12) of the machine. The ram reciprocates toward and away from a bolster plate (20) within a ram bearing (138) having hydrostatic bearings therein. A source of high pressure hydraulic fluid is interconnected to the hydrostatic bearing (50) of the eccentric coupling by means of a fluid coupling (350, 352) consisting of telescoping tubes, one end of which engages a spherically shaped seat (356, 358) in the frame (12) that is in communication with the high pressure fluid source and the other end of which engages a spherical shaped seat (354) in the moving connecting rod (36), which is in communication via a passageway (60) with the hydrostatic bearing (50). A main counterweight (142) is provided on the drive shaft (30) to counterbalance the effects of the reciprocating ram and a two shaft (166), counter-rotating weight system counterbalances lateral loads imposed on the machine (10) by the main counterweight. The bolster plate (20) of the machine is provided with a deep support structure (24) and surrounding concrete (26) to form a stable base (28) to reduce vibrations caused by the impact of the tooling with the strip of material being formed or blanked.
Abstract:
An improved contact for use in a high density chip carrier socket mounted on a circuit member which utilizes a cover which to wedge the leads of the chip carrier into electrical engagement with a respective contact. A tool receiving recess is incorporated into the contact so that the forces exerted on the socket while pressing the cover into place can be opposed, minimizing the forces exerted on the connection between the socket and the circuit member, typically a solder joint. Providing a tool, that operates from one side of the circuit member, in order to press the cover into place while engaging the contact recess to oppose the insertion related forces, which can also pull the cover from the contacts, without exerting significant forces on the connection, by engaging a lip in the cover while pressing on the carrier.
Abstract:
A miniature circuit board edge connector assembly includes an insulative housing 2, electrical spring blades 12A in the housing, conductor portions 12B pivotally interlocked with the spring blades 12A and pivotally impinged against corresponding conductive post portions 11, a cam 30 resiliently flexes the spring blades 12A, causing the conductor portions to pivot and engage circuit conductors 37 of a circuit board 38, and to provide circuit paths, from this circuit conductors 37 to the post portions 11, that are shorter than the lengths of the spring blades 12A.