摘要:
A node in a wireless communication system comprising an antenna array with at least a first antenna function and a second antenna function. The node further comprises a first radio chain and a second radio chain, where each antenna function is connected to a base band via a corresponding radio chain. Each radio chain comprises an oscillator, a splitter and a multiplexer, each oscillator being arranged to feed a signal with a unique frequency band to the splitter in the same radio chain. The splitter is arranged to divide the signal into at least two signal parts and feed each part to the multiplexer of each radio chain such that each multiplexer in the node receives signal parts from each splitter in the node. The splitter is arranged to weight the division of the signal into the signal parts in dependence of the frequency bands fed by each oscillator.
摘要:
The present invention relates to a first node in a wireless communication network. The first node is arranged to communicate with at least one serving node and comprises a served antenna arrangement that is adapted to communicate with said serving node by means of at least one electrically adjustable antenna radiation lobe. The first node is arranged to evaluate communication properties for said serving node Furthermore, the first node is arranged to include antenna gain of the served antenna arrangement when performing said evaluation.
摘要:
Throughput conditions limited by multiplicative noise may be improved by distributing a transmission power across MIMO data streams communicated between MIMO communication nodes. In particular, the transmission power is distributed based on knowledge at the transmitter of the MIMO channel to decrease the transmission power allocated to one or more of the data streams associated with a dominant signal path relative to the transmission power allocated to one or more data streams associated with a weaker signal path to increase at least one of a quality and a throughput condition of the MIMO channel.
摘要:
The method and apparatus disclosed herein improve throughput conditions limited by multiplicative noise by determining precoder weights for each data stream communicated between a MIMO transmitter node and a MIMO receiver node. The precoder weights are determined based on information derived from non-precoded reference symbols to decrease the energy allocated to the dominant signal path relative to the energy allocated to the non-dominant signal paths.
摘要:
The invention relates to a method in a base station serving a cell, the base station using a frequency bandwidth and comprising an antenna arrangement and a controller. The antenna arrangement comprises a number of antenna devices and a beamformer. The method comprises the steps of: associating, in the beamformer, at least a first and a second frequency band with a respective first and a second beam, each frequency band comprising a part of the frequency bandwidth used by the base station; dynamically determining, in the controller, a degree of utilization of the at least first and second frequency bands within the at least first and second beam; and re-associating, in the beamformer, the at least first and second frequency bands with the first and second beam, based on the determined degree of utilization of frequency bands. The invention also relates to base stations, computer programs and computer program products.
摘要:
In a method of allocating power to data streams in a communication system, providing (S10) CQI for each of a plurality of data streams between a radio base station node and a user equipment node in the system. Subsequently, allocating (S20) transmit power to each of the plurality of data streams based at least on the provided respective CQI, and determining coding and modulation (S30) for the data streams based on at least the allocated power.
摘要:
The invention relates to a wireless communications system for communicating with user equipment located inside a physical structure. The system comprise a node having at least two antenna ports and being adapted for wireless communication with the user equipment, and at least one leaky cable having two ends wherein each end of the at least one leaky cable is connected to one of the antenna ports of the node. The at least one leaky cable is provided at least partially inside the physical structure and being adapted for wireless communication over a radio channel with the user equipment.
摘要:
The invention relates to a projectile (6) provided with a slipping rotating band (1) which is designed for firing from a weapon system with a rifled barrel. The rotating band (1) comprises an inner ring (2) and an outer ring (3) that seals against the barrel. The outer ring is fitted on the outer surface of the inner ring and the inner ring is slippably fitted on the projectile. The rotating band (1) is configured to remain fitted on the projectile (6) from launcher to target by virtue of the fact that the inner ring (2) is made of fibre-reinforced polymer composite or particle-reinforced polymer composite, or fibre-reinforced metal matrix composite or particle-reinforced metal matrix composite. The invention also relates to a slipping rotating band (1) and to a method for producing a slipping rotating band (1) in which the outer ring (3) is affixed to the inner ring (2).
摘要:
The MIMO method and apparatus disclosed herein improve throughput conditions limited by multiplicative noise by reducing the gain of the data streams associated with one or more dominant signal paths between MIMO communication nodes. As used herein, multiplicative noise refers to any noise dependent on or proportional to a signal strength at a transmitting node and/or a receiving node of a wireless communication network. An additional method and apparatus are included for determining that multiplicative noise limits the throughput conditions.
摘要:
The invention relates to a wireless outdoor-indoor multiple-input multiple-output (MIMO) communications system for communicating with user equipment located inside a physical structure such as a building. The MIMO communication system is comprised of a node having at least two node antennas, wherein the node is configured for line of sight (LOS) wireless MIMO communication with at least two outdoor-indoor repeaters, and of at least two outdoor-indoor repeaters adapted for LOS wireless MIMO communication with the node. The repeaters have at least one repeater antenna each, provided outside the physical structure, for LOS MIMO communication with the node and at least two DASs each, provided inside the physical structure, for indoor MIMO communication with the user equipment located inside the physical structure. The repeaters are provided outside on the same physical structure and spaced well-apart, and each DAS of each repeater is provided such that they provide the same indoor coverage of the same interior space in the physical structure.