摘要:
Methods and systems are provided for determining the location of a first wireless device (e.g., a mobile unit) within a wireless network comprising a second wireless device (e.g., an access point). The method includes determining a signal strength contour associated with RF communication between the access point and the mobile unit, and adding a correction factor to the signal strength contour to produce a corrected signal strength contour, wherein the correction factor includes the sums of the differences between the transmit power and the antenna gain associated with the mobile unit and the access point. In an alternate scheme involving stored fingerprint data, a correction factor is introduced based on the differences between antenna gains and transmit power associated with the mobile unit under consideration and the mobile unit used for generating the fingerprint data. The systems and methods disclosed herein are applicable, for example, to networks operating in accordance with 802.11, RFID, WiMax, WAN, Bluetooth, Zigbee, UWB, and the like.
摘要:
Methods and systems are provided for controlling RF reader operations based the location of the RF reader. One method includes determining that the RF reader is located within a zone associated with an access level and enabling or disabling the RF reader based on the access level. A system includes multiple access ports (APs) defining multiple zones including an access level for the RF reader. The system also includes a switch configured to determine a present zone of the mobile RF reader and enabling the RF reader based on the access level of the present zone. Another system includes means for receiving a signal from an access port and means for determining a location of the RF reader based on the signal, the location associated with an access level. The system also includes means for enabling or disabling the RF reader based on the access level.
摘要:
Described are a method and a system for granting and denying network access to a device based on a location of that device. A method includes determining a current location of at least one mobile unit, permitting network access to a wireless network to the mobile unit if a network access policy of the mobile unit is configured to permit network access for the current location, and denying network access to the wireless network to the mobile unit if the network access policy of the mobile unit is configured to restrict network access for the current location. The system includes a processor generating network access policy data for at least one mobile unit, the network access policy data configured to one of permit network access and restrict network access for the at least one mobile unit depending on a location of the at least one mobile unit within an operating environment, a wireless switch providing a wireless network infrastructure, a location determination module calculating a current location of the at least one mobile unit, and a plurality of wireless access points in communication with the wireless switch, wherein each one of the wireless access points one of permits network access and restricts network access to the at least one mobile unit based on the current location and the network access policy data for the at least one mobile unit.
摘要:
An RF switch as described herein can communicate with different types of data transmitting devices such as RF readers, RFID tags, and other RF devices. The RF switch employs “plug-and-play” reader interface adapter modules, which can be pre-installed in the RF switch or downloaded to the RF switch as needed. Each interface adapter module represents or includes a different data protocol (or suite of protocols) that is compatible with a particular class, category, type, or group of data transmitting device. The use of these interface adapter modules enables the RF switch to be deployed in a protocol-agnostic form that is scalable and upgradeable in the field.
摘要:
A system for monitoring the state of an RF network generally includes a plurality of wireless devices coupled to the network and having one or more associated antennae, the wireless devices configured to process data received from a plurality of RF elements within range of the antenna. An RF switch is coupled to the network and configured to receive and transmit the data over the network, the RF switch having a memory configured to store a plurality of performance indicators, wherein each of the performance indicators is associated with an operational characteristic of one or more of the plurality of wireless devices. A display is coupled to the network for displaying a visual representation of the plurality of performance indicators.
摘要:
An RFID system provides opportunistic locationing of RFID tags and associated assets in environments where multiple tags are read from multiple readers. A radio frequency identification (RFID) system includes a first RFID reader coupled to the network and having a first antenna associated therewith. The first reader is configured to read a first set of tag IDs from a first set of RFID tags within a first range of the first antenna. A second RFID reader is coupled to the network and has a second antenna associated therewith. The second RFID reader is configured to read a second set of tag IDs from a second set of RFID tags within a second range of the second antenna. An RF switch is coupled to the network and is configured to receive the first set of tag IDs and the second set of tag IDs from the first RFID reader and the second RFID reader. The RF switch is configured to reconcile the location of an asset having a particular tag ID when the particular tag ID is an element of both the first set of tag IDs and the second set of tag IDs.
摘要:
System flexibility and ease-of-design is greatly enhanced by using a multicore abstraction layer (MCAL) to interface between a multicore hardware platform, a device operating system and the packet transfer functions of the system. Systems and techniques are described for processing a data packet received at a network interface of a network infrastructure device (such as a wireless switch) or other computing system, particularly using multi-core processors. A classification handler initially classifies the data packet. A plurality of protocol handlers each associated with a data protocol processes the data packet if the classification of the data packet matches the data protocol associated with the protocol handler, and one of several application handlers each associated with a user applications processes the data packet if the classification of the data packet matches the user application associated with the application handler. The MCAL is configured to send the data packet to the classification handler after the packet is initially received, and to subsequently direct the packet toward one of the protocol or application handlers in response to the classification of the data packet. MCAL further contains a set of the containers for handlers. Real application, protocol and classification handlers register with MCAL and are modules developed outside of the MCAL.
摘要:
Described are integrated active tags in a mobile device. The mobile device may include (a) a transceiver broadcasting a first location beacon when a capacity of a battery of the mobile device is above a predetermined threshold; and (b) a tag broadcasting a second location beacon when the capacity of the battery of the mobile device is below the predetermined threshold.
摘要:
A method is used for deployment of a wireless infrastructure. The method comprises deploying a plurality of access ports in a facility based on a layout that depends on a type of the facility. The method comprises receiving at least one parameter from at least one of the plurality of access points. The method comprises dynamically determining settings of the plurality of access points based on the at least one parameter.
摘要:
A wireless data communication system includes an access port configured to wirelessly communicate with a plurality of mobile units within multiple basic service sets (BSS), and a wireless switch having multiple predefined wireless local area networks (WLANs). The wireless switch is configured to automatically map the WLANs to the basic service sets and transmit to the access port a configuration template depending upon the type of access port. In one embodiment, there are n basic service sets, each having a corresponding basic service set identifier (BSSID), and m WLANs, each having a corresponding WLAN index, wherein the m WLAN indices are uniformly mapped to the n BSSIDs such that each BSSID has substantially the same number of WLAN indices mapped thereto. In a particular embodiment, there are n=4 BSSIDs per access port and m=16 pre-mapped WLANs. In this way, the wireless switch and respective access ports can be set-up in a simplified manner, in much the same way that set-up is performed with traditional access points.