摘要:
A method of decoding an embedded bitstream includes the steps of reading encoded subsequences in the bitstream as ordered, decoding at least some of the ordered subsequences, and combining the subsequences to obtain reconstructed data. The encoded subsequences are read in order of decreasing expected distortion reduction per expected bit of description.
摘要:
A distinguished node is dynamically selected from a subset of nodes in a wireless network. Data samples from the subset of nodes are received in view of the distinguished node status. At least one estimate is generated from the data samples and the data samples are compressed conditioned on the estimate.
摘要:
A method for rewriting a memory array (408) with a number of memory elements (206) includes performing a rewrite process to change the memory array (408) from an initial state to a target state in a manner that avoids violating to a set of weight constraints at any time during the rewrite process. A memory system includes a memory array (408) and a memory controller (104) configured to perform a rewrite process to change the memory array (408) from an initial state to a target state in a manner that avoids violating a set of weight constraints at any time during the rewrite process.
摘要:
Embodiments of the present invention provide context-class-based universal denoising of noisy images and other noise-corrupted data sets. Prediction-error statistics for each prediction class, relative to a prefiltered image, are collected to estimate a bias for each prediction class, and prediction-error statistics for each conditioning class, relative to a prefiltered image, are accumulated based on the difference between predicted values and corresponding prefiltered-image symbols. The prediction-error statistics are accumulated using computed prediction-error-statistics vectors, with inversion of a prediction-error vector generated from each prediction prior to accumulation in a prediction-error-statistics vector. Conditional probability distributions are computed for individual contexts, which allow for computing a clean-image-estimated, value for each noisy-image value by minimizing a computed distortion over a range of possible estimated-clean-image symbols.
摘要:
A first node receives aggregated compressed data and unaggregated data from a second node in a wireless multi-hop network. The first node compresses its own collected data based on the received unaggregated data. The first node aggregates its own compressed data with the aggregated compressed data received from the second node. The first node forwards an unaggregated version of its own collected data along with aggregated compressed data to a next hop in the wireless multi-hop network.
摘要:
Various embodiments of the present invention relate to a discrete denoiser that replaces symbols in a received, noisy signal with replacement symbols in order to produce a recovered signal less distorted with respect to an originally transmitted, clean signal than the received, noisy signal. Certain, initially developed discrete denoisers employ an analysis of the number of occurrences of metasymbols within the received, noisy signal in order to select symbols for replacement, and to select the replacement symbols for the symbols that are replaced. Denoisers that represent examples of the present invention use blended counts that are combinations of the occurrences of metasymbol families within a noisy signal to determine the symbols to be replaced and the replacement symbols corresponding to them.
摘要:
A method and apparatus for processing a received digital signal that has been corrupted by a channel is disclosed. The method includes storing the received digital signal and receiving a partially corrected sequence of symbols that includes an output of a preliminary denoising system operating on the received digital signal. Information specifying a signal degradation function that measures the signal degradation that occurs if a symbol having the value I is replaced by a symbol having the value J is utilized to generate a processed digital signal by replacing each symbol having a value I in a context of that symbol in the received digital signal with a symbol having a value J if replacement reduces a measure of overall signal degradation in the processed digital signal relative to the received digital signal as measured by the degradation function and the partially corrected sequence of symbols.
摘要:
Embodiments of the present invention are directed to various enhanced discrete-universal denoisers that have been developed to denoise images and other one-dimensional, two-dimensional or higher-dimensional data sets in which the frequency of occurrence of individual contexts may be too low to gather efficient statistical data or context-based symbol prediction. In these denoisers, image quality, signal-to-noise ratios, or other measures of the effectiveness of denoising that would be expected to increase monotonically over a series of iterations may decrease, due to assumptions underlying the discrete-universal-denoising method losing validity. Embodiments of the present invention apply context-class-based statistics and statistical analysis to determine, on a per-context-class basis, when to at least temporarily terminate denoising iterations on each conditioning class. Each iteration of the iterative methods applies context-based denoising only for those conditioning classes that statistical analysis indicates remain valid for denoising purposes.
摘要:
Embodiments of the present invention provide context-class-based universal denoising of noisy images and other noise-corrupted data sets. Prediction-error statistics for each prediction class, relative to a prefiltered image, are collected to estimate a bias for each prediction class, and prediction-error statistics for each conditioning class, relative to a prefiltered image, are accumulated based on the difference between predicted values and corresponding prefiltered-image symbols. The prediction-error statistics are accumulated using computed prediction-error-statistics vectors, with inversion of a prediction-error vector generated from each prediction prior to accumulation in a prediction-error-statistics vector. Conditional probability distributions are computed for individual contexts, which allow for computing a clean-image-estimated, value for each noisy-image value by minimizing a computed distortion over a range of possible estimated-clean-image symbols.
摘要:
Denoising such as discrete universal denoising (DUDE) that scans a noisy signal in an attempt to characterize probabilities of finding symbol values in a particular context in a clean signal can perform a rough denoising on the noisy signal and identify contexts from a roughly denoised signal. The rough denoising improves estimation of the statistical properties of the clean signal by reducing the false differentiation of contexts that noise can otherwise create. Statistical information regarding occurrences of symbols in the noisy signal and corresponding contexts in the roughly denoised signal can then be used to denoise the noisy signal. The specifics of the rough denoising can be chosen based on knowledge of the noise or of the clean data. Alternatively, the DUDE can be used in an iterative fashion where the denoised signal produced from a prior iteration provides the contexts for the next iteration.