摘要:
A surface electrocardiogram (EKG) is emulated using signals detected by the internal leads of an implanted device. In one example, the emulation is performed using a technique that concatenates portions of signals sensed using different electrodes. In another example, the emulation is performed using a technique that selectively amplifies or attenuates portions of a single cardiac signal sensed using a single pair of electrodes. The surface EKG emulation may be performed by the implanted device itself or by an external device, such as a programmer, based on cardiac signals transmitted thereto. The external device then displays the emulated surface EKG along with an intracardiac electrogram (IEGM) and set of event markers. Alternatively, the external device displays an entire set of emulated EKGs that had been generated based on the same patient input data but using different emulation techniques. The emulated EKGs are displayed along with an actual surface EKG for the patient so that a physician may easily identify the optimal emulation technique for that patient.
摘要:
An implantable cardiac defibrillation device provides pre-shock stimuli to reduce the defibrillation threshold (DFT). The device includes an arrhythmia detector that detects fibrillation of a fibrillating chamber of a heart and a pulse generator that provides a fibrillation therapy output responsive to the arrhythmia detector detecting fibrillation of the fibrillating chamber of the heart. The therapy output includes a defibrillating shock having an output magnitude exceeding a temporary defibrillation threshold of the fibrillating chamber and at least one pre-defibrillating shock output pulse that reduces an initial defibrillation threshold of the fibrillating chamber to the temporary defibrillation threshold. An electrode system having at least two defibrillation electrodes delivers both the at least one pre-defibrillating shock output pulse to the heart and the defibrillating shock to the fibrillating chamber of the heart.
摘要:
Techniques are provided for monitoring thoracic fluid levels based on thoracic impedance (ZT) and cardiogenic impedance (ZC). In one example, the implantable device tracks the maximum time rate of change in cardiogenic impedance (i.e. max(dZC/dt)) to detect trends toward hypervolemic or hypovolemic states within the patient based on changes in heart contractility. The detection of these trends in combination with trends in thoracic impedance allows for a determination of whether the thoracic cavity of the patient is generally “too wet” or “too dry,” and thus allows for the titration of diuretics to avoid such extremes. In particular, a decrease in thoracic impedance (ZT) in combination with a decrease in max (dZC/dt) is indicative of the thorax being “too wet” (i.e. a fluid overload). Conversely, an increase in thoracic impedance (ZT) in combination with a decrease in max (dZC/dt) is indicative of the thorax being “too dry” (i.e. a fluid underload).
摘要:
Briefly, values representative of ventricular end-diastolic volume (EDV) are detected using ventricular electrodes and then heart failure, if occurring within the patient, is evaluated based on ventricular EDV. In this manner, ventricular EDV is used as a proxy for ventricular end-diastolic pressure. By using ventricular EDV instead of ventricular end-diastolic pressure, heart failure is detected and evaluated without requiring sophisticated sensors or complex algorithms. Instead, ventricular EDV is easily and reliably measured using impedance signals sensed by implanted ventricular pacing/sensing electrodes. The severity of heart failure is also evaluated based on ventricular EDV values and heart failure progression is tracked based on changes, if any, in ventricular EDV values over time.
摘要:
An implantable cardiac stimulation device is configured to measure selected ventricular contraction parameters and apply stimulation therapy based on an analysis of the ventricular contraction parameters. The ventricular contraction parameters may include impedance values that correspond to the volume of fluid in the right ventricle and the left ventricle. The ventricular contraction parameters may include motion values that correspond to heart sounds/motion in the right ventricle and the left ventricle. The ventricular contraction parameters can be used to form a ventricular parameter loop associated with one or more cardiac cycles. The total area within the resulting loop should be maintained below a threshold value through the application of applicable stimulation therapy and/or further physician assistance.
摘要:
An implantable cardiac stimulation device is configured to measure selected ventricular contraction parameters and possibly apply stimulation therapy based on the ventricular contraction parameters. In accordance with one aspect, the ventricular contraction parameters include impedance values that correspond to the volume of fluid in the right ventricle and the left ventricle. In accordance with another aspect, the ventricular contraction parameters include motion values that correspond to heart sounds/motion in the right ventricle and the left ventricle. The ventricular contraction parameters can be used to form pseudo P-V loop from which treatment decisions can be made.
摘要:
Time-varying spatial signals are detected by accelerometers mounted within the patient. The signals, representative of the actual 3-D trajectory of the patient, are compared with information representative of expected trajectories retrieved from memory to identify a current patient posture, which may be either a dynamic posture such as walking or running or a change in posture such as rising from a seated position to a standing position. In this manner, a change in posture of the patient is identified based upon a full 3-D trajectory, rather than merely the orientation of the patient at the beginning and the end of the change in posture. In an example described herein, the implantable device stores information representative of expected 3-D trajectories in the form of pre-calculated comparison matrices derived from orthonormal kernels employing Laguerre functions or Lagrange functions. A technique is also described for use by an external programmer for pre-calculating comparison matrices so as to reduce the processing burden within the implanted device during posture detection.
摘要:
An implantable cardiac stimulation device comprises a metabolic demand sensor, an activity sensor, and one or more pulse generators. The metabolic demand sensor and activity sensor can sense metabolic demand and physical activity parameters, respectively. The pulse generators can generate cardiac pacing pulses with timing based on a comparison of the metabolic demand and physical activity parameters. The timed cardiac pacing pulses can prevent a sleep apnea condition.
摘要:
A system and method are provided for compensating for the drop in blood pressure upon standing. Upon transition from prolonged sitting, lying down, or standing position, the pacemaker abruptly increasing its pacing rate upon postural transition. The pacing rate is abruptly increased to about 80-100 bpm in 20 seconds-one minute. The pacing rate then decreases slowly to another high rate in two or three minutes and then follows the metabolically indicated rate. This pacing rate is triggered whenever a patient stands after a prolonged reclined or supine/prone position as indicated by activity variance measurements.
摘要:
An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.