Abstract:
A system includes a vehicle transmission shifter input device; and a computer. The computer includes a processor and a memory, the memory including instructions such that the processor is programmed to detect, via the shifter input device, a user input to shift the vehicle transmission; and generate, a haptic feedback via the shifter input device.
Abstract:
A vehicle flow influencing assembly includes, among other things, a downforce generator that extends laterally outward from an area of a vehicle, and that extends longitudinally from a leading edge portion to a trailing edge portion, the trailing edge portion aligned along a longitudinal axis of the vehicle with a side mirror of the vehicle, the downforce generator configured to influence flow to reduce buffeting.
Abstract:
A tire smoke induction prevention system for a motor vehicle includes a tire smoke condition feature and a controller. The tire smoke condition feature may be adapted to produce a warning signal when potential for tire smoke generation exceeds a predetermined level or likelihood. The controller is adapted to respond to such a warning signal and engage a climate control system of the motor vehicle in recirculation mode. A related method for preventing the induction of tire smoke into a passenger cabin of a motor vehicle is also provided.
Abstract:
An exemplary vehicle flow influencing assembly includes, among other things, a downforce generator extending laterally outward from an area of a vehicle that is forward a side window. The downforce generator is configured to influence flow to reduce buffeting. A vehicle flow influencing method includes, among other things, lowering a side window to provide an opening to a passenger compartment of a vehicle, and influencing flow over the opening using a downforce generator that extends laterally outward from an area of a vehicle that is forward the side window. The influencing reducing buffeting.
Abstract:
A hood for a vehicle includes an inner panel having a deformation region on at least a portion of the inner panel. The deformation region defining a plurality of perforations configured to tear at an area between the perforations. The perforations being defined in an array constituting at least a partial outer periphery of the deformation region such that upon impact, the deformation region is configured to break along the outer periphery at the area between the perforations.
Abstract:
A system includes a microphone, a controller, and a speaker. The microphone is configured to detect noise generated by a functional hardware component due to user interaction with the component. The controller is configured to identify the component from the noise and obtain a noise cancelling signal pre-associated with identification of the component. The speaker is configured to output a noise cancelling sound based on the noise cancelling signal whereby the noise is attenuated.
Abstract:
A system includes a microphone, a controller, and a speaker. The microphone is configured to detect noise generated by a functional hardware component due to user interaction with the component. The controller is configured to identify the component from the noise and obtain a noise cancelling signal pre-associated with identification of the component. The speaker is configured to output a noise cancelling sound based on the noise cancelling signal whereby the noise is attenuated.
Abstract:
A vehicle includes a control system for reducing oversteer by controlling an electronic limited-slip differential (eLSD). The eLSD has one or more clutches configured to selectively distribute a controlled and varied amount of drive torque between a pair of wheels during a turn. At least one controller is programmed to operate the eLSD in (i) a tow-mode in response to the vehicle towing an object and (ii) a non-tow-mode in response to the vehicle not towing an object. When operated in the tow-mode, the eLSD is controlled by the controller to actively reduce a difference in speed between the wheels compared to when the eLSD is operating in the non-tow-mode or is not operated in the tow-mode.
Abstract:
Methods and systems for charging an electric energy storage device of a vehicle are described. In one example, the electric energy storage device is charged via a receiving coil that may be placed in a horizontal orientation or a vertical orientation during charging of the electric energy storage device via the receiving coil.
Abstract:
A vehicle having a first vehicle device configured to provide inputs to a first user device associated with a first user is disclosed. The vehicle further comprises a camera configured to capture images of the first user in the vehicle. The vehicle further comprises processor configured to obtain the images from the camera, and determine that the first user is operating the first user device in the vehicle based on the images. The processor may be further configured to determine an availability of the first vehicle device responsive to a determination that the first user is operating the first user device, and activate the first vehicle device to enable the first user to operate the first user device via the first vehicle device when the first vehicle device is available.