Abstract:
Provided is a stereoscopic endoscope device enabling precise observation based on a 3D-image and observation of a wide field of view range based on a 2D-image and enabling the change of the field of view range according to the situation with a simple structure without increasing the size of an imaging unit or complicating the configuration. An imaging unit 50 disposed in a distal portion of a stereoscopic endoscope includes a pair of left and right imaging units 50L, 50R that capture a parallax image of a subject of a part of interest. The left and the right imaging unit 50L, 50R include a left and a right imaging optical system 60L, 60R, which form a subject image, and reflecting mirrors 302L and 302R located on the rear end sides of the left and the right imaging optical system 60L, 60R, respectively.
Abstract:
An image-processing device includes an image acquiring device, an encoded aperture pattern setting device configured to set encoded aperture patterns for multiple pupil images of the main lens, respectively, a calculation device configured to perform a weighted product-sum calculation between the pupil image for each lens of the lens array in the image acquired from the image sensor and the encoded aperture pattern set by the encoded aperture pattern setting device, and an image generating device configured to generate an image based on a calculation result by the calculation device.
Abstract:
An imaging method uses an imaging device including a taking lens having a plurality of regions each with an independent characteristic and an image pickup element having a plurality of light-receiving sensors provided so as to correspond to the plurality of regions, the plurality of light-receiving sensors performing pupil division of a light beam passing through any of the plurality of regions for selective light-receiving, from an imaging signal from a light-receiving sensor corresponding to one region of the plurality of regions, an image corresponding to the one region is generated. When the generated image is corrected, an influence of a light beam passing through a region other than the one region is removed from the image generated so as to correspond to the one region.
Abstract:
An imaging apparatus includes: an image sensor having a plurality of light receiving elements arranged therein; a light shielding member disposed between an imaging optical system and the image sensor, the light shielding member configured to make only a light flux, which has passed through a predetermined area of the imaging optical system, incident on a first light receiving element which is a part of the plurality of light receiving elements; and an image generation device configured to generate an image of a subject from an imaging signal of the first light receiving element, in which the light shielding member is a plate-shaped member having a first light shielding material configured to shield a light flux, which has passed through an area other than the predetermined area, formed therein.
Abstract:
Provided are an imaging device and an imaging method that can generate images between which a difference in appearance caused by a difference between the polarization directions of received light is suppressed in a case in which different images are generated on the basis of light having different polarization directions. An imaging device (1) includes: an imaging optical system (10); a first polarizer that aligns a polarization direction of light transmitted through a first pupil region and a second pupil region with a first polarization direction; a second polarizer that transmits light in a second polarization direction different from the first polarization direction; an imaging element (100) that receives the light transmitted through the first pupil region and the second pupil region; and an image generation unit that performing a crosstalk removal process on pixel signals of a first pixel and a second pixel and generates a first image corresponding to the light transmitted through the first pupil region and a second image corresponding to the light transmitted through the second pupil region on the basis of the pixel signals subjected to the crosstalk removal process.
Abstract:
Provided is an imaging apparatus that captures a multispectral image of four bands or more. An imaging apparatus (1) includes an imaging optical system (10), an image sensor (100), and a signal processing unit (200). The imaging optical system (10) includes a bandpass filter unit (16) of which at least one of aperture regions transmits light beams of a plurality of wavelength ranges, and a polarization filter unit (18) that polarizes the light beams transmitted through the bandpass filter unit (16) in a plurality of directions, in a vicinity of a pupil thereof. The image sensor (100) receives light beams transmitted through a plurality of types of spectral filter elements and a plurality of types of polarization filter elements. The signal processing unit (200) processes signals output from the image sensor (100) to generate a plurality of image signals. In the imaging apparatus (1), the number of transmission wavelength ranges of at least one of the aperture regions of the bandpass filter unit (16) is equal to or less than the number of transmission wavelength ranges of the spectral filter element.
Abstract:
Provided are an imaging evaluation map, an imaging evaluation map generating device, an imaging evaluation map generating method, and an imaging evaluation map generating program capable of easily making an imaging plan. A coordinate space setting section (31) that sets a coordinate space including an object, an imaging candidate position setting section (32) that sets a plurality of imaging candidate positions in the coordinate space, an imaging condition setting section that sets an imaging condition for the object (33), a characteristic part setting section (34) that sets a plurality of characteristic parts for the object, an evaluation standard setting section (35) that sets an evaluation standard for imaging based on the imaging candidate position and the imaging condition for each characteristic part, an evaluation value calculating section (36) that calculates an evaluation value that represents an evaluation of imaging in a case where an object is imaged under the imaging condition set by the imaging condition setting section (33) at the imaging candidate positions set by the imaging candidate position setting section (32) for each imaging candidate position, and an imaging evaluation map generating section (37) that generates an imaging evaluation map in which the evaluation value is determined for each imaging candidate position are provided. In a case where the evaluation value for each imaging candidate position is calculated, the evaluation value calculating section (36) calculates individual evaluation values for the respective characteristic parts according to the evaluation standard, and calculates a sum of the obtained individual evaluation values for the respective characteristic parts as the evaluation value.
Abstract:
The present invention provides an imaging apparatus that individually obtains high image quality, restored images for a plurality of different directions at a wide angle of view without using a lens, and an imaging module using such an imaging apparatus. In an imaging apparatus according to an aspect of the invention, incident light is divided into a plurality of azimuthal regions by a directional sensor, and images corresponding to the azimuthal regions are restored from a plurality of projection images acquired corresponding to the azimuthal regions. Accordingly, incident light from oblique directions does not become noise to incident light from a front direction, and projection images can be individually acquired for the azimuthal regions throughout a wide range from the front direction to the oblique directions. For this reason, restoration processing according to properties of a pattern mask and the projection images is executed, whereby it is possible to individually obtain high image quality restored image for a plurality of different directions (azimuthal regions) at a wide angle of view without using a lens.
Abstract:
An imaging apparatus capable of capturing an in-focus image while moving, and an image composition apparatus capable of generating a high detail composite image are provided. A camera 100 is mounted on an unmanned aerial vehicle 10, and imaging is performed while moving. During imaging, a focusing mechanism included in the camera 100 is controlled, and a focus position is periodically scanned. In addition, during imaging, movement of the unmanned aerial vehicle 10 is controlled such that at least one scanning is performed during movement to a position shifted by an imaging range.
Abstract:
Provided is a high decorative illumination device that utilizes a lenticular lens sheet. An illumination device includes a lenticular lens sheet and an LED light source. The lenticular lens sheet is curved in an X direction, and a convex surface is formed in a concave shape. The LED light source is positioned inside the convex surface of the lenticular lens sheet. First and second reflection components from first and second bright points which are acquired by reflecting irradiation light rays from the LED light source from plano-convex cylindrical lenses are incident on left and right eyes of an observer who observes the illumination device. The observer observes a virtual image as if a light emitter is present in a position in which the first and second reflection components cross each other.