Abstract:
A composition comprising a polyanion and a polymer or copolymer of a substituted or unsubstituted thiophene as a solution or as a dispersion in a liquid medium and at least one compound with at least two vinyl groups, wherein said liquid medium comprises at least one non-aqueous solvent and has less than 30% by weight of water; and said composition comprises more than 0.1% by weight of the polymer or copolymer of a substituted or unsubstituted thiophene and is capable of UV-photopolymerization due to said composition comprising at least one vinyl-compound capable of initiating UV-photopolymerization and/or at least one UV-photoinitiator; an ink with the composition of the composition; and a process for producing a layer or pattern on an object with the composition.
Abstract:
A method for preparing a composition containing between 0.08 and 3.0% by weight of polymer or copolymer of a 3,4-dialkoxythiophene in which the two alkoxy groups may be the same or different or together represent an optionally substituted oxy-alkylene-oxy bridge, a polyanion and at least one non-aqueous solvent from a dispersion of the polymer or copolymer of (3,4-dialkoxythiophene) and the polyanion in water which is prepared in the substantial absence of oxygen, comprising in the following order the steps of: i) mixing at least one of the non-aqueous solvents with the aqueous dispersion of the polymer or copolymer of (3,4-dialkoxythiophene) and the polyanion; and ii) evaporating water from the mixture prepared in step i) until the content of water therein is reduced by at least 65% by weight; a printing ink, printing paste or coating composition, capable of yielding layers with enhanced conductivity at a given transparency, prepared according to the above-described method; a coating process with the coating composition thereby producing a layer with enhanced conductivity at a given transparency; and a printing process with the printing ink or paste thereby producing a layer with enhanced conductivity at a given transparency.
Abstract:
A process for preparing an aqueous or non-aqueous solution or dispersion of a polythiophene or thiophene copolymer, containing structural units according to formula (I): in which R1 and R2 independently of one another represent hydrogen or a C1-5-alkyl group or together form an optionally substituted C1-5-alkylene residue, comprising the step of: preparing the polythiophene or thiophene copolymer with an initiator in a reaction medium in the presence of polyanions under oxidizing or reducing conditions under an inert atmosphere such that when said initiator is added less than 3 mg of oxygen per litre of the reaction medium is present in the reaction medium; an aqueous or non-aqueous solution or dispersion prepared therewith; the use of an aqueous or non-aqueous dispersion or solution comprising the aqueous or non-aqueous solution or dispersion of a polythiophene or thiophene copolymer for coating an object; a printable paste containing the aqueous or non-aqueous solution or dispersion of a polythiophene or thiophene copolymer; and an electroconductive or an antistatic layer prepared using an aqueous or non-aqueous solution or dispersion comprising the aqueous or non-aqueous solution or dispersion of a polythiophene or thiophene copolymer.
Abstract:
A thermographic recording material comprising a support and a thermosensitive element, the thermosensitive element comprising at least one substantially light-insensitive organic silver salt, at least one organic reducing agent therefor in thermal working relationship therewith, at least one binder and at least one toning agent represented by formula (I): wherein X represents the optionally substituted atoms necessary to form a 6-membered ring.
Abstract:
A material for making a conductive pattern, the material comprising a support and a heat-differentiable element, the heat-differentiable element comprising an outermost layer containing a polyanion and an intrinsically conductive polymer and optionally a second layer contiguous with the outermost layer, characterized in that the outermost layer and/or the optional second layer contains hydrophobic thermocoagulable latex particles in a weight ratio range with respect to the intrinsically conductive polymer in the range of 20:1 to 1:5, the hydrophobic thermocoagulable latex particles are capable upon heating of increasing the conductivity of the heated parts of the outermost layer relative to the unheated parts of the outermost layer and/or changing the removability of the heated parts of the outermost layer relative to the unheated parts of the outermost layer and the heat-differentiable element does not comprise a di- or polyhydroxy organic compound or an aprotic compound with a dielectric constant, ∈, ≧15; a method of making a conductive pattern on a support therewith; and a use of the material for making a conductive pattern in making an electronic circuit in the production of an electric or semiconductor device such as a printed circuit board, an integrated circuit, a display or touch screen, an electroluminescent device or a photovoltaic cell.
Abstract:
A process for preparing a substantially transparent conductive layer configuration on a support, the layer configuration comprising in any order at least a first layer containing an intrinsically conductive polymer optionally containing structural units represented by formula (I): wherein n is larger than 1 and each of R1 and R2 independently represents hydrogen or an optionally substituted C1-4 alkyl group or together represent an optionally substituted C1-4 alkylene group or an optionally substituted cycloalkylene group, preferably an ethylene group, an optionally alkyl-substituted methylene group, an optionally C1-12 alkyl- or phenyl-substituted ethylene group, a 1,3-propylene group or a 1,2-cyclohexylene group; and a second layer consisting of a non-continuous layer of conductive silver, the process comprising the step of: preparing the second layer by a photographic process; and light emitting diodes, photovoltaic devices, transistors and electroluminescent devices comprising a layer configuration prepared according to this process.
Abstract:
A method for preparing a composition containing between 0.08 and 3.0% by weight of polymer or copolymer of a 3,4-dialkoxythiophene in which the two alkoxy groups may be the same or different or together represent an optionally substituted oxy-alkylene-oxy bridge, a polyanion and at least one non-aqueous solvent from a dispersion of the polymer or copolymer of (3,4-dialkoxythiophene) and the polyanion in water which is prepared in the substantial absence of oxygen, comprising in the following order the steps of: i) mixing at least one of the non-aqueous solvents with the aqueous dispersion of the polymer or copolymer of (3,4-dialkoxythiophene) and the polyanion; and ii) evaporating water from the mixture prepared in step i) until the content of water therein is reduced by at least 65% by weight; a printing ink, printing paste or coating composition, capable of yielding layers with enhanced conductivity at a given transparency, prepared according to the above-described method; a coating process with the coating composition thereby producing a layer with enhanced conductivity at a given transparency; and a printing process with the printing ink or paste thereby producing a layer with enhanced conductivity at a given transparency.
Abstract:
A thiophene compound represented by formula (I): in which A represents a C1-5-alkylene bridge; R represents a —R1—(C═O)—R2 group; —R1— represents a —R3— or —R4—X—R5— group; R2 is hydrogen, a hydroxy group, a thiol group, —NR6R7, —OR8 or a —SR9 group; R3, R4 and R5 are independently an alkylene group or an arylene group; X is a —O—, —S— or ═NR10; R6 and R7 are independently hydrogen, an optionally substituted amino group or an optionally substituted alkyl group; R8 and R9 are independently an optionally substituted alkyl group (optionally with at least one substituent selected from the group consisting of an alcohol, amide, ether, ester or sulfonate group), an optionally substituted aryl group or a —SiR11R12R13 group; R10 is an alkyl, aryl or acyl group; and R11, R12 and R13 are independently an optionally substituted alkoxy or alkyl group; polymers derived therefrom; a process for polymerizing a thiophene according to formula (I), optionally chemically or electrochemically; and solutions, dispersions, pastes and layers containing polymers derived therefrom.
Abstract translation:由式(I)表示的噻吩化合物:其中A表示C1-5亚烷基桥; R表示-R 1 - (C = O)-R 2基团; -R 1 - 表示-R 3 - 或-R 4 -X-R 5 - 基团; R 2是氢,羟基,硫醇基,-NR 6 R 7,-OR 8或-SR 9基团; R 3,R 4和R 5独立地是亚烷基或亚芳基; X是-O-,-S-或= NR 10; R 6和R 7独立地是氢,任选取代的氨基或任选取代的烷基; R 8和R 9独立地为任选取代的烷基(任选具有至少一个选自醇,酰胺,醚,酯或磺酸酯基的取代基),任选取代的芳基或 - SiR 11 R 12 R 13基团; R 10是烷基,芳基或酰基; 和R 11,R 12和R 13独立地是任选取代的烷氧基或烷基; 衍生自其的聚合物; 根据式(I)聚合噻吩的方法,任选化学或电化学方法; 以及含有由其衍生的聚合物的溶液,分散体,糊剂和层。
Abstract:
A silver halide photographic processing solution comprising at least one polymeric compound inhibiting sludge formation and preventing “pi-line” artefact, more particularly in radiographic non-destructive testing applications, wherein said polymeric compound comprises at least one monomer unit having a silver complexing moiety and at least one monomer unit having a solubilizing group, and wherein both said silver ion complexing moiety and said solubilizing group are comprised in same or different monomer units.
Abstract:
A substantially light-insensitive black and white thermographic material comprising a support and a thermosensitive element containing a substantially light-insensitive organic silver salt, a reducing agent therefor in thermal working relationship therewith and a binder, wherein the binder is a water-dispersible film-forming polymer having covalently bonded ionic groups and the thermographic material is thermally developable under substantially water-free conditions; and a process for producing the substantially light-insensitive black and white thermographic material comprising the steps of: producing an aqueous dispersion of the substantially light-insensitive organic silver salt; producing one or more aqueous coating compositions containing together the aqueous dispersion of the substantially light-insensitive organic silver salt, the reducing agent and the binder; and applying the one or more aqueous coating compositions to the support, thereby forming after drying the thermosensitive element.